=

Automatic Extraction of
Object-Oriented Component Interfaces

John Whaley Michael C. Martin Monica S. Lam

Computer Systems Laboratory
Stanford University

{jiwhaley, mcmartin, lam}@stanford.edu

ABSTRACT

Component-based software design is a popular and effec-
tive approach to designing large systems. While com-
ponents typically have w ell-defined interfaces, sequencing
information—which calls must come in which order—is of-
ten not formally specified.

This paper proposes using m ultiple finite statemachine
(FSM) submodels to model the interface of a class. A sub-
model includes a subset of methods that, for example, imple-
ment a Java interface, or access some particular field. Eac h
state-modifying method is represented as a state in the FSM,
and transitions of the FSMs represent allow able pairs of con-
secutiv e methods. In addition, state-preserving methods are
constrained to execute only under certain states.

We have designed and implemented a system that includes
static analyses to deduce illegal call sequences in a program,
dynamic instrumentation tec hniques to extract models from
execution runs, and a dynamic model checker that ensures
that the code conforms to the model. Extracted models can
serve as documentation; they can serve as constraints to be
enforced by a static checker; they can be studied directly
by developers to determine if the program is exhibiting un-
expected behavior; or they can be used to determine the
completeness of a test suite.

Our system has been run on several large code bases, in-
cluding the joeq virtual machine, the basic Java libraries,
and the Java 2 Enterprise Edition library code. Our experi-
ence suggests that this approach yields useful information.

1. INTRODUCTION

A popular approach to designing large systems is
component-based soft w aralesign. The idea is to improve
softw are reuse b y crafting carefully engineered softare el-
ements suitable for a broad array of applications. Also,

This research w as supported in part by NSF aw ard
#0086160, an NSF student fellowship, and a Stanford Grad-
uate Fellowship.

Permission to make digital or hard copies of part or al of this work or
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citdion onthefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

© 2002 ACM 1-58113-562-9...$5.00

218

commi t
Figure 1: FSM for the database example

once the applications programming interface (API) has been
designed, implementors can low er the number of cross-
application dependencies that their code needs to w orry
about, concentrating instead on providing the services that
the APT specifies. As a result, modern enterprise comput-
ing architectures are not monolithic systems, but typically
consist of multiple tiers of reusable components such as user
interfaces or system services such as transactions, security,
and databases. The resulting component libraries can then
be reused across many different applications.

The API of these components often includes constraints
on when a public method may be invoked. F or example, an
SQL server may include the commands begin, commit, save,
and rollback. The command begin m ust first be executed,
then a series of save and rollback commands can be issued,
and then, finally, commit. It would be incorrect, for example,
if a save, rollback, or commit is invoked before awy begin
command. We can represen tthese constraints as a finite
state machine (FSM), as shown in Figure 1. Constraints
such as these are very common in APIs.

There has been a good deal of recent w ork that deals
with modeling objects with finite state machines. Previous
systems like Vault[7], NIL and Hermes[23] provide program-
mers with linguistic constructs to specify the state of the
variables in a program, and a compiler is used to ensure that
the object is always in the correct state. The advantage of
this approach is that code written in this way is guaranteed
to conform to the finite state models. This, how everye-
quires programmers to rewrite their code; retrofitting large
systems of existing code into this framework is not plausible.

Systems such as PREfix[3], Metal[5, 8] and SLAM[2] oper-
ate directly on existing softw are; they heck if the code con-
forms to pre-defined correctness constraints, many of which
can be expressed as FSMs. These systems have been demon-
strated to be successful in finding many errors in operating
systems.

One of the bottlenec ksof such systems is that the cor-
rectness constraints are often not readily available for large
systems. Few programmers are both willing and able to


 
Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.


write down the specifications. Furthermore, programmers
may also be wrong when specifying the constraints. To deal
with this, there have been various recent attempts to infer
constraints automatically. Engler et al. [16] proposed tech-
niques to infer constraints from programs by analyzing the
behavior of the code statically. To allow for errors in the
program, behavior that is observed most of the time is con-
sidered the norm. Their results suggest that this approach
is effective in finding bugs like whether a lock function call
is followed by an unlock. In addition, dynamic techniques to
extract information directly from programs have also been
proposed[1, 9]. In particular, Ammons et al. use machine
learning techniques, with limited success, to extract speci-
fications from the program by analyzing dynamic program
traces[1].

1.1 TheProblem

The focus of this paper is on developing techniques that
can automatically extract application interfaces directly
from existing code. However, unlike most of the previous
work in this area, we are interested in techniques that ap-
ply to large object-oriented component-level software rather
than system code written in low-level languages like C. Large
applications typically manipulate many dynamically allo-
cated objects stored in recursive data structures. Instances
of the same class may all follow the same state transition
model, but they can be in different states at any one time.
The states they are in may be encoded in some cases by ex-
plicit variables; however, more often than not, their states
are governed by highly application-specific semantics that
are unknown to the programming tools. Techniques that
track the control flow or values of variables through limited
programming paths are not effective here. Because of our
interest in handling large software, on the order of millions
of lines of code, formal methods such as model checking are
also not feasible.

Our techniques are designed to take advantage of the mod-
ularity in object-oriented programming languages. In a well-
designed object-oriented system, the set of public methods
in each class definition defines a complete interface for all
instances of objects belonging to the class. It is also guar-
anteed that only the methods of a class can mutate the state
of the object. We can thus operate at the method level: in-
stead of dealing with the definitions and uses of individual
memory locations, we can focus on finding higher-level rela-
tions like how methods such as commit and rollback relate
to each other.

This paper proposes using multiple FSM submodels to
model the interface of a class. A submodel includes a sub-
set of methods that, for example, implement a Java inter-
face, or access some particular field. Each state-modifying
method is represented as a state in the FSM, and transitions
of the FSMs represent allowable pairs of consecutive meth-
ods. In addition, state-preserving methods are constrained
to execute only under certain states. We explore two fully
automatic techniques for extracting partial interface models
from large Java programs, one being a dynamic tool and the
other a static analysis tool.

Our dynamic analysis technique observes the program as
it runs to build up a model that reflects the operations per-
formed during the execution of the program. The dynamic
analysis does not suffer the disadvantage of static analyses,
which must necessarily be conservative. Here, the results

219

gathered are based on complete sequences of events that
can actually take place. Unfortunately, a dynamic system
can only prove things existentially. Any purported univer-
sal that a dynamic system finds may prove to only be an
artifact of the test cases that the system was trained on.

To demonstrate that a model actively forbids certain
cases, we must turn to static analysis. Our static analy-
sis technique searches for method sequences on a compo-
nent that invariably cause exceptions to be thrown. Such
sequences are deemed illegal. A static system by itself, how-
ever, suffers from the disadvantage that it cannot easily iden-
tify a priori whether or not a given sequence is part of typical
or permitted usage. The advantages and disadvantages of
the static and dynamic approaches complement one another
nicely; a hybrid system that uses them both can acquire a
great deal more information than either one alone.

The hybrid system can also take advantage of further ad-
vantages of the dynamic and static approaches that do not
directly pertain to the model. A static system has fuller
access to the structure of the code, and can make a variety
of deductions about the nature of the classes to let the dy-
namic system focus more carefully on useful features of the
program runs. The dynamic system in turn has easy access
to the current state of the heap at any given time, so there
is no need for advanced pointer alias analysis on the static
side. Deductions which require detailed alias information
can simply be delayed until run time.

1.2 Applications of Automatically Extracted
Models

Partial models extracted by our system are useful in sev-
eral ways. First, the information can serve as documenta-
tion of the system. This is especially useful for programmers
faced with using a large piece of software for the first time.
Second, component designers may wish to examine the ex-
tracted model to see if it coincides with their expectations.
Third, the dynamic analysis can be used as a means to mea-
sure the coverage of a test suite. The model extracted from
analyzing the test suite gives a succinct summary of the
sequencing of methods tested. These results may suggest
additional tests be written to test important subsequences
of method invocations. Fourth, given a model that may have
been either extracted automatically or prepared by the pro-
grammer, we can monitor the execution of a program and
automatically flag errors that deviate from correct behavior.
Finally, static tools to check the conformance of the model
can be implemented to locate errors in programs. We have
implemented these analyses and systems to operate on Java
bytecodes.

In this paper, we present several case studies to show that
our relatively simple but scalable techniques are successful
in extracting useful models from several large programs. We
tested our tools on four different applications that together
consist of over 1.2 million lines of code. We demonstrate:

1. The effectiveness of the model. The model auto-
matically extracted for the socket implementation in
java.net illustrates how our interface models are ef-
fective in capturing the correct usage of a class.

Automatic static model extraction. Our static analy-
sis successfully extracts useful models for the standard
Java libraries. The information is useful as documen-
tation; also, they can be used by static tools to look



for errors in programs.

Use of the model to characterize test suites. We
demonstrate scalability by using the dynamic analy-
sis tool on the J2EE enterprise edition platform. We
show that the extracted models convey interesting in-
formation about the program being tested and the test
suite itself.

Use of the models in software auditing. To get a sense
of the applicability of our system for program evolution
and developer feedback, we applied our technique to
a program that we are familiar with: the joeq virtual
machine. The dynamic system was able to find some
discrepancies between the intended and implemented
API, and the static system provided an accurate ren-
dition of the appropriate call sequence.

1.3 Paper Overview

We first define our model of component interfaces in Sec-
tion 2, illustrate it with an example, and discuss how to
optimize its utility. We describe our static analysis in Sec-
tion 3 and our dynamic analysis in Section 4. We present
our preliminary experience in Section 5. Section 6 discusses
related work and Section 7 concludes.

2. A COMPONENT INTERFACE MODEL

The design of our model of the interface is inspired by
the concept of path ezpressions[4]. Path expressions were
originally designed to allow simple specification of complex
synchronization schemes for concurrent processes and oper-
ating systems. Regular expressions are used to define the set
of admissible execution histories of operations on a shared
resource. These histories represent an interleaving of actions
on multiple threads.

Our approach is based on a simplified version of path ex-
pressions that treat objects as a resource shared between
different sections of an application. Instead of allowing a
general regular expression to capture the history of meth-
ods invoked on an object, we instead place restrictions on
our FSMs to make them easier to extract and more efficient
to enforce dynamically.

A naive approach is to have every method in the model
represented by exactly one state.

Definition 2.1 Naive model. A naive interface model of
a class ¢l is a finite state machine, denoted M. = (S,T),
where S is the set of methods in class ¢l plus the two special
methods START and END, and T' C (S x S) is the set of
legal method sequences. An instance is in state op if op is
the last method from the set S that has been invoked on
the instance, or in state START if no such method exists. A
method op’ € S can be invoked on an instance if and only if
the instance is in state op and (op,op’) € T.

There are two major problems with this naive model.
First, most objects have sufficiently complex sequencing con-
straints that merely knowing the last method called cannot
capture the proper behavior of the object. Secondly, many
methods are state-preserving: they do not have any side ef-
fects and do not advance the state of the object. Including
these in the naive model destroys its accuracy.

In the remainder of this section we refine our naive model
to address these issues. Section 2.1 discusses the issue of

220

[set _a ]«»[set b ]

[getfa ] [get b ]
N T

Figure 2: Naive model example

Figure 3: Improved model with field splitting

more complex sequencing constraints, and Section 2.2 dis-
cusses state-preserving transitions. Section 2.3 concludes
with a formal specification of the model.

21 Modd Slicing by Type and by Member
Fields

Models are associated with individual classes; whether the
class is an instantiable object or some abstract superclass
is unimportant to the model. Most objects are members
of multiple classes—they are members of a class that sub-
classes some other type, or they implement a number of
interfaces. Each type, with its methods, encapsulate a set
of constraints. Thus, each type to which an object may be
cast specifies a separate model, which in turn is represented
as an FSM. The full set of sequencing constraints for the
object are represented by the product of the FSMs.

By the same token, we also slice the methods in a class by
their field accesses. More precisely, given a class of n fields,
we create up to n submodels, where each submodel contains
the methods (not necessarily unique to that submodel) that
access the same field. A submodel may subsume another if
its methods and allowable method pairs are a superset of the
other. The rationale for slicing by fields is that unless meth-
ods refer to the same variable, they are not related, and their
relative ordering is independent of each other. Representing
them separately allows us to accurately model independent
aspects of a single object.

Consider a simple class with two fields a and b, and four
methods, set_a, get_a, set_b, and get_b. Here, the method
get_a cannot be invoked before set_a, and similarly, the
method get_b cannot be invoked before set_b. Attempting
to model this behavior with the naive model produces the
model shown in Figure 2. Notice that in order to allow
arbitrary interleaving of get and set operations, we had to
give up the capability of enforcing that both a and b be
defined before use. If we split the model in two, we get
the FSMs shown in Figure 3. This new system is thus able
to enforce that get_a and get_b are preceded by set_a and
set_b, respectively.



Figure 4: Final model for get/set example

2.2 State-Preserving Transitions

In a naive model, every method call changes the state of
the model. However, not all methods update the state of the
object; the toString and hashCode methods defined on all
Java objects are examples of this. Having methods like these
in our model allows any method to be followed by any other
method, provided the state-preserving method is invoked in
between. A common approach used to improve accuracy is
to create finite state machines that keep track of the last
k calls instead of only the most recent call[21]. However,
using such an approach would only exacerbate the problem.
The model may now contain up to n2* transitions, greatly
complicating the analysis. Furthermore, it is legal to make
k state-preserving calls in a row, again landing the object in
a state that can reach any other state.

Our approach is to distinguish between methods that pro-
duce side effects and those that do not. Side-effect free
methods do not advance the state of the object; common ex-
amples of side-effect free methods in Java include toString
and hashCode. Including them would create an overly weak
model as discussed above. We thus ignore these side-effect
free methods when building our set S.

However, although a side-effect free method may not ad-
vance the state of an object, it may still have sequencing
constraints; for example, a method to get a value may not
be invokable before the value has been set. We thus define
for each side-effect free method the set of states for which it
is legal to call that method. We represent this in our model
diagrams with dotted lines connecting methods that are not
states to the states in which that method is legal.

To illustrate this, let us consider again the example from
the previous section, and assume that get_a and get_b do
not have side effects. The final models are shown in Figure 4.

2.3 Formal definition of the mode

We now expand our naive definition of a model to include
these two refinements:

Definition 2.2 An interface model of a class is a col-
lection of submodels, each of which is a triple, denoted
M = (U,S,T), where U is the set of methods governed
by the submodel plus the special methods START and END,
S C U is the set of methods that qualify as states, and
T C (S x U) is the set of allowable method pairs. An in-
stance is in state op if op is the last method from the set S
that has been invoked on the instance, or in state START if
no such method exists. A method op’ € U can be invoked
on an instance if and only if the instance is in state op and
(op,op’) €T.

3. STATIC MODEL EXTRACTOR

This section describes a static analysis technique that can

221

automatically detect the sequencing constraints in compo-
nent interfaces designed to guard against misuse. The basic
idea is that we analyze the uses and definitions of fields
in the class, and identify pairs of method invocations that
would cause an exception in the program. For example, if
one method stores a null to a field, it cannot be followed
by an invocation to a method that dereferences that field
unconditionally. We first discuss why this information is
often available in well-designed Java components, and then
discuss our technique that extracts such information.

3.1 Defensive Programming

Widely used components are often defensively pro-
grammed to detect illegal sequences of method invocations
so as to ensure the integrity of a component. A typical ap-
proach is to maintain a state value and then check if the state
is valid before performing an operation. If it is not valid, a
Java program will usually throw an appropriate exception;
programs written in other languages would typically return
a return code indicating an error or would assert that the
state is invalid and exit the program.

The state may be implicitly encoded in a field that holds
the normal data being operated on. For example, a null field
would indicate that the method that sets it has not been in-
voked. Sometimes, the state is explicitly encoded in a field.
This field is typically implemented as an enumerated type
holding all the possible states the object is in. Without the
benefit of enumerated types, Java implementations typically
use integers or booleans. The field is similar to the concept
of type state variables[22]. This paper presents empirical
evidence that the notion of type state variables is particu-
larly applicable to object-oriented software, and especially
to languages that have a good exception handling facility.

Let us consider as an example the design of a list it-
erator, as shown in Figure 5. This code is taken from
the java.util.AbstractList.ListItr class in the standard
Java 1.3.1 class library. java.util.AbstractList.ListItr
implements the java.util.ListIterator interface. The
set operation writes some object to the “current” element
of the iterator, as indicated by the index variable lastRet.
The next or previous methods adjust the index variable,
whereas the remove or add methods eliminate the notion of
having a current element. The latter is indicated by set-
ting the variable lastRet to -1, which will cause the set
operation to throw an IllegalStateException if there is
no intervening next or previous method invocations. The
lastRet variable thus doubles as a value used in the algo-
rithm as well as a type state.

For code that has been defensively programmed, it is pos-
sible to analyze the implementation to deduce sequences
that are forbidden by the component.

3.2 Algorithm

Our algorithm consists of three steps. First, for each
method m, we identify those fields and predicates that guard
whether exceptions can be thrown. Second, we find those
methods m’ that set these fields to values that can cause the
exception. Immediate transitions from m' to m are illegal.
Finally, an interprocedural analysis is run over the class to
determine which methods may modify or reference the field.
The complement of the illegal transitions with respect to the
relevant methods forms a model of transitions accepted by
the static analysis.



public Object next() {

/] ...
lastRet = cursort++;
/...

}

public Object previous() {
/] ...
lastRet = cursor;
/...

}

public void remove() {
if (lastRet == -1)

throw new IllegalStateException();

/] ...
lastRet = -1;
/...

}

public void add(Object o) {
/] ...
lastRet = -1;
/...

}

public void set(Object o) {
if (lastRet -1)
throw new IllegalStateException();
/...

Figure 5: Example code from AbstractList.ListItr.

The general problem of whether the invocation of a
method may cause another to raise exceptions is undecid-
able. Fortunately, state variables are often used in a rather
simple manner, as illustrated in the example above. Thus,
we restrict our analysis to finding those simple predicates
that involve testing a field with a constant null or a con-
stant integer. Note that in Java, all dereferences are pre-
ceded with a null check, thus this definition includes finding
the runtime exceptions thrown as a result of Java semantics.

First, the algorithm finds predicates that control whether
or not exceptions are thrown. The algorithm computes the
control dependence information[10] for each method. Then,
for each site that can throw an exception, it checks if the
predicate guarding its execution is a single comparison be-
tween a field of the current object and a constant value, and
that the field is not written prior to being tested. If so,
we say that that single predicate is a pre-condition for that
method, and that the field being tested is a state variable.

The second step analyzes all the methods to find out if
they must assign some constant values to the state variables.
That is, we perform a constant propagation analysis on the
methods and determine if the state variables are set to some
constant at the exit. We have identified an illegal transition
if the constant value satisfies the condition that guards the
exception-throwing statements.

We have implemented these algorithms using the joeq
compiler system[25]. It correctly identifies start — set,
start — remove, remove — set, add — set, remove —
remove, and add — remove as transitions that will throw
an exception. The complement—that is, the allowable
transitions—is shown in Fig. 6.

222

Figure 6: Submodel extracted statically from the
slice on lastRet in AbstractList.ListItr.

4. THE DYNAMIC EXTRACTOR AND
CHECKER

This section describes a dynamic instrumentation tech-
nique that can automatically detect the usage pattern of
objects, building up a series of submodels, or can enforce
an already specified model at run time. The basic idea is
to track each instance of an instrumented class individually.
When a method is invoked, we update the history of the
object and record the sequence in each relevant submodel.
We first discuss our basic extraction technique, then discuss
some issues that must be addressed when implementing the
system in Java.

4.1 Extracting a model

Given a set of class files to instrument, we begin by run-
ning the mod/ref analysis of Section 3 over the bytecode to
determine which methods are relevant to each field. Each
field f is assigned a submodel. Any method that writes f is
deemed state-modifying, while any method that reads but
does not write f is deemed relevant, but state-preserving.
We then use this to guide the insertion of calls to our anal-
ysis routines at method boundaries.

Our system uses the Byte Code Engineering Library[6] to
rewrite the bytecodes to insert the calls to our analysis rou-
tines. The analysis routines only deal with one submodel at
a time; if a method is relevant to multiple models, multi-
ple calls are inserted. Once all the calls have been placed,
we then run training programs that use our instrumented
objects.

Each instance keeps track of, for each submodel, that last
state-modifying method that was called on that instance.
When a method is invoked on an object, the extractor ex-
amines these records, updates the submodels appropriately,
and then updates the last-call information of the instance
for each submodel where the method is state-modifying. In
order to capture the exported interface and ignore the in-
ternal usage of the object, the dynamic system maintains
knowledge of the local call stack and ignores any call that is
internal to that instance. Once the program finishes, tran-
sitions to the END state are noted for each instance, and the
final set of models is written out.

The dynamic checker accepts a set of models as input. It
is nearly identical to the extractor; the primary difference
is that where the extractor adds elements to the set of legal
transitions, the checker prints warnings or raises exceptions
when a previously unseen transition occurs.

4.2 Complications

Though conceptually simple, a number of challenges and



[ Program | Description | Lines of Code | Analyses
java.net 1.3.1 Networking library 12,000 | static & dynamic
Java libraries 1.3.1 | General purpose library 300,000 static
J2EE 1.2.1 Business platform 900,000 dynamic
joeq Java JVM implementation 65,000 | static & dynamic

Table 1: Applications Used in the Experiments

complications arise when implementing this system.

Inheritance. A submodel specifies which methods to in-
strument in a class. However, some of these methods may
not actually exist in the .class file because they are inher-
ited from a superclass. We solve this problem by adding
dummy methods that simply call the methods of the super-
class explicitly. These may then be instrumented along with
the methods that the class itself actually defines.

Ezxceptional control flow. Control flow may leave a method
via an uncaught exception. Therefore, it is not sufficient
to merely insert calls at the beginning of each method and
before each return instruction. To deal with uncaught ex-
ceptions, we add an additional exception handler to each
method that will catch any uncaught exception, call our
analysis routines, and then rethrow the exception.

Multithreading. The Java language supports and encour-
ages multithreading. This raises two issues; first, we must
ensure that our model extraction routines do not get cor-
rupted due to race conditions, and second, we must address
the issue what a “last call” means when multiple threads
are making concurrent calls on an object.

To ensure that model state is not corrupted, only one
thread should actually be in the model extracting code at
any given time. We ensure mutual exclusion by declaring
the extraction/checking routines to be synchronized. Since
these routines are fairly short and only occur at method
boundaries, this does not significantly impact program exe-
cution.

When an object is being used by multiple threads, our
system keeps a separate call history for each thread that
accesses an object, thus capturing the protocol followed by
each thread independently.

Memory leaks. We may not maintain any hard references
to any object in the actual program, because this will pre-
clude otherwise unreachable storage from being reclaimed
by the garbage collector. We solve this problem by taking
advantage of the Java 1.2 facility of weak references to re-
fer to an object without inhibiting its reclamation by the
garbage collector. When an object loses all non-weak ref-
erences, the garbage collector notifies the dynamic system,
which then adds an END transition and ceases tracking the
object.

5. EXPERIENCES

We applied our tools to several real-life applications. The
set of programs are shown in Table 1. We first use a model
extracted from the java.net library v1.3.1 to illustrate our
model. We show that the model provides significantly better
results than the naive one where all the methods are consid-
ered state transformers in the same model. Second, we use
our static analysis technique to extract the models from the
Java standard library v1.3.1. Third, we apply the dynamic
instrumentation tool to extract models from the J2EE ap-

223

plication, a large application framework for which we had
no prior knowledge about the implementation. We have
developed a simple “test suite” generator, and the models
extracted gives us useful insight on the completeness of the
test suite. Finally, we apply the static and dynamic tools
to the joeq program, which is a Java compiler and a Java
virtual machine written in Java, and show the value that the
automatic model extraction can bring to a system designer.

5.1 Illustration of our Model and Tools

Our first experiment is to demonstrate the feasibil-
ity of our model in capturing a component interface.
To do that we apply our technique to the abstract
class java.net.SocketImpl in the java.net library. The
java.net.SocketImpl is a common superclass of all classes
that implement sockets in Java. It is used to create both
client and server sockets.

The class consists of 16 methods, shown in Figure 7.
We ran two experiments. In the first experiment, we used
the dynamic model extractor to find a lower bound on the
model. We instrumented the Eteria IRC client and exercised
it by connecting to an IRC server. The second experiment
applied the static analysis tool to find an upper bound of
the model.

[ Method | Description |

create creates datagram socket

connect connects the socket

bind binds the socket

listen sets the maximum queue length
for incoming connections

accept accepts a connection

getInputStream returns input stream view

getOutputStream returns output stream view

available returns the number of bytes that
can be read without blocking

close closes the socket

shutdownInput shuts down input stream

shutdownOutput shuts down output stream

getFileDescriptor | returns file descriptor

getInetAddress returns address for this socket

getPort returns the remote port number

getLocalPort returns the local port number

reset closes and reinitializes the socket

Figure 7: Important methods in java.net.SocketImpl

51.1 Experiment: the dynamic model extractor

We ran the dynamic tools first assuming the naive model
where every method call changes the state of the finite-state
machine. We obtained the model in Figure 8. The model
has 11 states and 17 edges. Most of the implied usage rules



create

get | nput Stream
get Qut put Stream

set Option

avai |l abl e . i
finalize

get Fi | eDescri pt or

Figure 8: Dynamically extracted naive model for
java.net.SocketImpl

Figure 9: Dynamically extracted submodel of the fd
field in java.net.SocketImpl

were simply artifacts in the client code — for example, we
found that the only call that followed getInputStream was
getOutputStream. This shows that a naively dynamically-
extracted model, without slicing by fields or identifying
state-preserving methods, is basically pointless in this case.

We proceeded to slice the methods by the fields that they
access, separate out the state-preserving methods, and re-
run the dynamic tests on these submodels. We obtained
six models, five of which were simple two-state “put-get”
models. The model for the fd file descriptor field was more
interesting. The fd field has the following state-setting and
state-dependent methods:

state-modifying: create, connect, close

state-dependent: available, close,
shutdownInput, getInputStream, getOutputStream,
shutdownOutput, getFileDescriptor

We re-ran the dynamic tests using this information, and
obtained the model in Figure 9.

Slicing by fields and separating state-preserving meth-
ods produced a dramatically simpler model—one which suc-
cinctly summarizes the sequencing constraints on the object.

5.1.2 Experiment: the static analysistool

In the second experiment, we applied our static analysis
tool to determine transitions that would throw an excep-
tion. Our static analysis correctly identified that it was ille-
gal to perform the sequences (start) — getInputStream,

224

(start) — getOutputStream, (start) — available, close
— getInputStream, close — getOutputStream, and close
— available.

It is worth noting that the standard Java API documen-
tation for the java.net.SocketImpl class does not specify
under what conditions an exception would be thrown. It
was only through inspection of the source code that we were
able to check the results of our tool.

Inspecting the source code, we found that the connect
method implicitly performs a create operation, therefore
the create is unnecessary. Furthermore, it is legal to call
connect multiple times, to call create after connect, and
also to call close at any time. These transitions were not
triggered in our dynamic tests, but our static analysis (and
subsequent inspection of the source code) did confirm that
these are in fact legal.

5.2 Automatic static model extraction: Java
standard classlibrary

To evaluate the effectiveness of our static analysis in ex-
tracting models from bytecode directly, we applied our tool
to the Java standard class library v1.3.1. This library con-
tains 914 classes, out of which the tool found 81 classes that
had method sequences that invariably threw exceptions.

A wide variety of classes are amenable to this technique.
The tool was able to identify seven iterator classes in the
library as following the iterator model as discussed in Sec-
tion 3. In addition, it also finds conformance to our model
in many other classes:

Vector and LinkedList: Data cannot be retrieved if none
exists. Calling a retrieval method immediately after
construction or clearing the collection is illegal.

I/O and socket classes: Data cannot be read or written
before the connection or the filestream are set up or
after the file streams are closed.

Timer: New tasks cannot be scheduled if the timer has been
canceled or finalized.

SimpleTimeZone: Certain methods cannot be accessed fol-
lowing some initializations.

AlgorithmParameters, KeyStore, SecureClassLoader,
and ClassLoader classes: Attempts to use the ob-
ject before initialization or reinitialize an already-
initialized object throw an exception.

ThreadGroup: Attempting to destroy a ThreadGroup more
than once throws an exception.

Signature: Initialization, updating and signing must pro-
ceed sequentially.

The actual constraints of the classes that we have ex-
tracted are shown in Figure 11. For brevity and clarity, we
have consolidated and simplified the extracted constraints.
Each row of the table describes the constraints that we found
for different sets of classes; classes that were found to have
similar constraints are merged into a single row in the ta-
ble. The table contains two types of constraints. Nega-
tive constraints, marked with a “—” sign, say that calling a
method in the “from” column immediately followed by call-
ing a method in the “to” column will always throw an ex-
ception, and is therefore illegal. Positive constraints, marked



Tttt

nitVerif

Figure 10: Model extracted

Signature.

statically from

with a “+” sign, say that the call in the “from” column must
precede any of the calls in the “t0” column, or an exception
will be thrown. The last column in the table gives the con-
dition on the instance variable by which the constraint was
found.

The model extracted for java.security.Signature is
particularly interesting. The state of the object is explic-
itly encoded by a field called state in the class. This state
field is an integer whose value can be one of 0, 2 or 3.> The
state is set to 0 in the initializer. Calling initSign() sets
the state to 2, and calling initVerify() sets the state to
3. If sign() is called without being in state 2, an exception
is thrown. Likewise, if verify() is called without being in
state 3, an exception is thrown. If update() is called with-
out being in state 2 or 3, an exception is thrown. Using
this information, our static analysis was able to generate
the model shown in Figure 10.

5.3 Evaluating Test Suites: J2EE

Our third experiment attempted to use the dynamic
model extractor to characterize a test suite. In addition,
we also wished to find the limit of dynamic instrumenta-
tion by exercising it on a large application. For this pur-
pose, we selected the Java 2 Enterprise Edition (J2EE) ver-
sion 1.2.1[18], a popular component architecture for creating
multitier enterprise applications in Java. It is a large system
comprising nearly a million lines of code in over 5,000 source
files. As an application for the J2EE architecture, we used
the Java Pet Store demo[19], a web enterprise application
provided by Sun and intended to be used as a framework
for developing J2EE business applications.

We have found that instrumenting every class of J2EE
renders the system too slow to be usable. We identified the
web service, the org.apache hierarchy, to be the bottleneck,
and found that just skipping the instrumentation for that
package is sufficient to create a usable system. The typical
latency for loading a page was in the 5-10 second range.

The goal of this experiment is to determine if we can use
the dynamic tool to evaluate a test suite. Unfortunately,
we do not have access to an official test suite for the J2EE
platform. For the purpose of our experiment, we have devel-
oped a tool that automatically generates test cases for web
applications with a graphical user interface. This “button
pusher” simulates a user traversing a web site by parsing and
traversing the web pages. It randomly clicks on links, goes
back, aborts transfers, reloads pages, etc. It also parses form
data so that it can correctly fill out web forms. This tool
was adapted from Ralf Wiebicke’s Link Verify program[26].

!Presumably, they used 0 rather than 1 to avoid having to
initialize the state variable.

225

start

7
(o)

rs

~

[rol | back}

suspend

resume

i

end

Figure 12: Sample model: TransactionManager

start

u

Encr easeRecur si onDept rﬂ

sinpl eWiteQbj ect

[decr easeRecur si onDept h}

'

end

Figure 13: Sample model: IIOPOutputStream

Running multiple concurrent copies of our button pusher
simulates a web server under heavy load. We collected our
models by concurrently running two instances of the button-
pusher and running each instance for two full iterations. A
complete test run over the pet store took approximately 20
minutes.

To get a sense of how the button pusher compared to
manual testing, we also performed a separate experiment
by manually accessing the server from about a dozen differ-
ent machines simultaneously and performing various opera-
tions. By comparing the models derived by these two testing
methods, we found that the button pusher was much more
complete and effective. In fact, the button pusher found
several sequences of commands that triggered uncaught ex-
ceptions in the J2EE system.

We found that running the button pusher over the sam-
ple Pet Store application invoked just under a fifth of the
methods in the J2EE library, and extracted models for 657
classes. Many of these, as we expected, have rather unin-
teresting models. For example, many of the models merely
specified an initializer (often the constructor itself) followed
by arbitrary sequences of different get and set routines.
There were, however, approximately 50 very interesting
models extracted, many of which had to do with database
transactions.

As an example, the interface automatically extracted
for the class javax.transaction.TransactionManager is
shown in Figure 12. This example illustrates that the tool
is effective in extracting sensible models automatically from
Java byte codes. This uses our naive model, because the
class in question is an abstract interface, with no internal



[ class [ +/- ] from to variable

AbstractList.Itr
AbstractList.ListItr
Collections.5 + next, previous remove, set lastRet==null,
HashMap.HashIterator
HashMap.Enumerator - add, remove remove, set index==-1
LinkedList.ListItr
TreeMap.Iterator
Vector - init, getFirst, size==
LinkedList removeAllElements getLast
i/o & sockets + close, finalize any other methods fd==null
PipedInputStream + connect receive, read
PipedReader - connect connect connected==0,1

- receivelast, close receive, read
PipedOutputStream + connect write connected==0,1
PipedWriter + connect connect
ObjectInputStream + readObject, defaultReadObject, currentObject==null

inputObject readFields
ObjectOutputStream + writeObject, defaultWriteObject, currentObject==null
outputObject putFields

+ putFields writeFields currentPutFields==null
Timer - cancel, finalize sched newTasksMayBeScheduled==0
SimpleTimeZone - some init function | decodeStartRule, decodeEndRule various
AlgorithmParameters
KeyStore + init “use” methods initialized==0
SecureClassLoader - init init
ClassLoader
ThreadGroup - destroy destroy destroyed==0
Signature + start initSign, initVerify

+ initSign, sign sign, update, state==0,2,3

initSign, initVerify
+ initVerify, verify verify, update,
initSign, initVerify

Figure 11: Constraints Extracted by Static Analysis

fields. A programmer unfamiliar with the system can learn
some salient information about the code by just perusing
these models. Developers may take this information as the
starting point and augment it to create a complete model.
More importantly, this also provides an interesting charac-
terization of the behavior of the program or the test suite
from which the model was generated. In this case, we see
that rollback methods are always the last methods invoked
on the object. This suggests that either the application sim-
ply discards all transactions once they were rolled back, or
the test suite does not exercise any code that performs other
operations after the rollback.

Shown in Figure 13 is another example that provides
useful information about the test suite. The figure is the
automatically extracted model for the J2EE internal class
com.sun.corba.ee.internal.io.IIOPOutputStream. It is
clear from the model that the recursion depth of the stream
at any simpleWriteObject call is never anything other than
1. Thus, we see that our test suite does not adequately test
the scenarios where recursion is encountered.

Our experiments with J2EE show that the automatic
model extractor is capable of extracting useful object behav-
ior from a large piece of software and also providing useful
information that characterizes a test suite.

5.4 Protocol checking: joeq

226

Our fourth experiment is to explore if our tools can help
a developer gain insight into his or her program and to find
errors in the program. For this purpose, we applied our
tool to the joeq system, which is a complete Java virtual
machine and a Just-In-Time compiler developed by one of
the authors of this paper[25]. Joeq can also compile Java
.class files into Intel object code. The sources of joeq, con-
sisting of approximately 65,000 lines of code, are available
via http://joeq.sourceforge.net.

In joeq, there is a jq_Method object for every Java method
in the system. As a method is loaded, prepared, and
compiled in joeq, the corresponding jq-Method object goes
through a sequence of states: load — prepare — compile
— execute. Because of the complexity due to dynamic load-
ing and linking, a large number of defects have been found
in joeq that could be attributed to erroneous assumptions
on the state that a jg_Method is in. In fact, as an aid to
debugging, an explicit state variable has already been intro-
duced to the jg-Method class so as to detect state violations
at run time.

In this experiment, the developer of the software already
has a reasonable model of the system. Our first step of
the experiment is to use our dynamic model extractor to
extract a model of the jg-Method class automatically. To
our surprise, the model included several instances of a
load—compile transition, which is a violation of the in-



tended API. Next, we ran our dynamic model checker on
joeq, using as an input the intended API. This tool pin-
pointed the invocation of the compile method that created
a violation. Further investigation revealed that a method
in a subclass of jq_Method, jq_-InstanceMethod.setOffset,
actually duplicated the code in jq_Method.prepare. The
assertions in the joeq source did not catch the lack of a
prepare state because the jq_InstanceMethod.setOffset
method also updates the state variable, indicating that
prepare had been called. There was no external indication
that set0ffset actually performed the prepare operation.
The program happens to work correctly, but it is very frag-
ile: inadvertently calling setOffset may trigger an incor-
rect prepare transition. Furthermore, if the functionality
of prepare is changed in the future, it is highly likely that
set0ffset would not be updated accordingly.

We also used the static analysis to analyze the behav-
ior of the jqgMethod class. It correctly identified the pres-
ence of an integer state variable, state, in the jq-Method
class, and deduced the correct sequence, load — (prepare
| setDffset) — compile — execute. The static analysis
was also able to identify the “incorrect” setOffset transi-
tion. Submodels on other fields also identified data depen-
dencies between methods; for example, the execute method
dereferences the compiled_code field, which is only set in
the compile method. The submodel for the compiled_code
field correctly identifies this dependency.

This example illustrates the usefulness of an independent
tool that checks the behavior of the program—it found a dis-
crepancy between the intended and the implemented API,
which may be a potential source of errors as the software
evolves. In this case, had the programmer provided the
specification, it would have been incorrect. This example
also illustrates the usefulness of a dynamic model checker.

6. RELATED WORK

Our work on the dynamic model extractor and modeler
was inspired in part by Ernst’s Daikon system[9], which ex-
tracts invariants from programs dynamically. While Daikon
tries to discover invariants such as relations between vari-
ables in a program, our system uses dynamic techniques
to discover the component interfaces. Whereas Daikon has
only been applied to relatively small programs, our instru-
mented code has much lower overhead and is applicable to
large applications. Recently, Daikon and the static checker
ESC have been integrated into a system such that Daikon
can discover invariants that ESC tries to verify[20].

Other dynamic techniques include the DIDUCE system,
which instruments data locations and tracks changes in the
invariants as time goes by. This system has proven successful
at finding the sources of errors in difficult corner cases[13].

Using finite-state machine models to model program be-
havior is quite common. The Metal system[5, 8] and the
SLAM toolkit[2] have been very successful in applying FSM
models statically to operating system code. Programming
languages such as Vault[7], NIL, and Hermes[23] encode
these machines directly into the source code. Systems such
as PREfix also contain models that can be represented as
FSMs|[3].

The Metal system uses a simple global FSM model to
track changes in state[5, 8]. It uses a metalevel compila-
tion step to statically identify locations in the code where
the model may be violated. Our models differ from the

227

Metal system’s in that we model object-oriented behavior
rather than low-level system resources, and therefore we use
per-instance FSM models rather than a single global FSM
model.

The SLAM toolkit checks temporal safety properties of
general C programs[2]. These properties are specified in
a language called SLIC, which uses a safety automaton to
model execution behavior at the level of function calls. The
authors found that it works well for programs whose behav-
ior is governed by an underlying finite-state protocol. Like
us, they also found that splitting models based on data was
effective in isolating behaviors.

Ammons et al. have a system for specification mining,
which attempts to extract FSM models of program behav-
ior from program traces[l]. Their system runs processed
traces of C program code through an off-the-shelf probabilis-
tic NFA learner. Our system, in contrast, trades generality
in order to leverage object-oriented program designs to pro-
duce more focussed specifications of component behavior.

Our models of component behavior are very similar to
the notion of typestates[22, 23]. In typestates, the type of
the object changes as the values stored in its fields change
or as the program invokes operations on the object. Strom
and Yemini developed a system called Typestate and two
languages, NIL and Hermes, that use formal typestate rules
to enforce static invariants on the state of a program at
different program points. They do not support traditional
pointers. Programs are checked for conformity by using
a flow-sensitive data-flow analysis[23] or a demand-driven
backward analysis[22]. They used typestates to statically
verify the initialization properties of values[23]. Xu uses
typestates to check the safety of machine code[27].

Vault is a type-safe variant of C[7]. Vault requires that
the programmer annotate or rewrite their code to match the
strict type model. Vault has no notion of path-sensitivity,
so the state of objects must be consistent at every point
in the program. It also has many restrictions on aliasing.
This allows Vault to make many strong assertions about
program behavior, but many programs are written such that
their roles are guarded by predicates. Vault’s system forbids
many valid programs written using this style.

Systems like Vault, NIL, and Hermes are complementary
to our system. They are able to take advantage of strong
models because they require the programmer to write their
code to obey a strict model. Our technique is able to obtain
weaker models over arbitrary, large pieces of code.

Our technique is similar to other notions of type. Gi-
rard introduces the notion of linear logic, which says that
resources can be used only once[11]. Wadler uses linear logic
to propose a new type system for functional languages that
models changes of state[24]. Gifford and Lucassen intro-
duced a type and effect discipline that uses type inference
techniques to track accesses to resources[17].

Our ideas about models of objects map closely to the
object-oriented design notion of roles. A role is the part
of an object that that fulfills its responsibilities to other ob-
jects. There has been work on specifying role models[12] and
mechanisms for role-based programming[14]. Kuncak et al.
describe a system for the programmer to specify the roles
of objects by their aliasing relationships with other objects,
along with a mechanism to statically verify those aliasing
constraints[15].



7. CONCLUSIONS

This paper proposes a new model for component inter-
faces. We propose using a finite state machine for each field
of a class, with one state for each method that writes that
field. We then add restrictions on from which states methods
that read the field may be invoked. We have proposed and
implemented two techniques that automatically extract such
models. The first is a dynamic instrumentation technique
that records legal method sequences from working programs.
The second is a static analysis that infers pairs of methods
that cannot be called consecutively. We have also developed
a dynamic model enforcer to ensure that a given model is
obeyed.

We have applied our tools to four large software systems
and found that it can automatically extract a variety of use-
ful data, assisting in various stages of software development.
A programmer may run this tool to learn about the common
uses of a component. One can build a model of a component
by extracting the models implied by a test suite, or those
resulting models may be examined to evaluate the complete-
ness of the test suite itself. A component developer may also
use these tools to determine if the implemented API matches
the intended one.

8. REFERENCES

[1] G. Ammons, R. Bodik, and J. Larus. Mining
specifications. In Proceedings of the 29th ACM
Symposium on Principles of Programming Languages,
pages 4-16, 2002.

T. Ball and S. Rajamani. Automatically validating
temporal safety properties of interfaces. In Proceedings
of the SPIN 2001 Workshop on Model Checking of
Software, pages 103-122, 2001.

W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static
analyzer for finding dynamic programming errors.
Software - Practice and Ezperience (SPE),
30:775-802, 2000.

A. N. Habermann R. H. Campbell. The specification
of process synchronization by path expressions.
Lecture Notes on Computer Science, 16, 1974.

A. Chou, B. Chelf, D. Engler, and M. Heinrich. Using
meta-level compilation to check FLASH protocol code.
In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 59-70, 2000.

M. Dahm. Byte code engineering library.
http://bcel.sourceforge.net, 2000.

R. DeLine and M. Fahndrich. Enforcing high-level
protocols in low-level software. In Proceedings of the
ACM SIGPLAN’01 Conference on Programming
Language Design and Implementation, pages 59-69,
2001.

D. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In
Proceedings of the Symposium on Operating Systems
Design and Implementation, pages 1-16, 2000.

M. Ernst, J. Cockrell, W. Griswold, and David
Notkin. Dynamically discovering likely program
invariants to support program evolution. In
Proceedings of the 1999 International Conference on
Software Engineering (ICSE’99), pages 213-224, 1999.

2]

(3]

[4]

[7]

(8]

[9]

228

[10] J. Ferrante, K. Ottenstein, and J. Warren. The
program dependence graph and its uses in
optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319-349, 1987.

J. Girard. Linear logic. Theoretical Computer Science,
50(1):1-101, 1987.

G. Gottlob, M. Schrefl, and B. Rock. Extending
object-oriented systems with roles. ACM Transactions
on Information Systems, 14(3):268-296, 1996.

S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. In
Proceedings of the International Conference on
Software Engineering, 2002.

M. Van Hilst and D. Notkin. Using C++ templates to
implement role-based designs. Technical Report TR
95-07-02, Department of Computer Science and
Engineering, University of Washington, 1996.

V. Kuncak, P. Lam, and M. Rinard. Role analysis. In
Proceedings of the 29th Annual ACM Symposium on
the Principles of Programming Languages, pages
17-32, 2002.

D. Lie, A. Chou, D. Engler, and D. Dill. A simple
method for extracting models from protocol code. In
Proceedings of the International Symposium on
Computer Architecture, pages 192—-203, 2001.

J. Lucassen and D. Gifford. Polymorphic effect
systems. In Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages,
pages 47-57, 1988.

Sun Microsystems. Java 2 platform, enterprise edition.
http://java.sun.com/j2ee/, 2001.

Sun Microsystems. Petstore application for the java 2
platform, enterprise edition.
http://java.sun.com/features/2001/05/petstore.html,
2001.

J. Nimmer and M. Ernst. Static verification of
dynamically detected program invariants: Integrating
Daikon and ESC/Java. In FElectronic Notes in
Theoretical Computer Science, volume 55, 2001.

S. P. Reiss and M. Renieris. Encoding program
executions. In Proceedings of the International
Conference on Software Engineering, pages 221-230,
2001.

R. Strom and D. Yellin. Extending typestate checking
using conditional liveness analysis. Software
Engineering, 19(5):478-485, 1993.

R. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability.
Software Engineering, 12(1):157-171, 1986.

P. Wadler. Linear types can change the world. In

M. Broy and C. B. Jones, editors, IFIP TC 2 Working
Conference on Programming Concepts and Methods,
pages 561-581, 1990.

J. Whaley. The joeq virtual machine.
http://sourceforge.net/projects/joeq, 2001.

R. Wiebicke. Linkverify.
http://rw7.de/ralf/htmltools/index.en.html, 1998.

Z. Xu, T. Reps, and B. Miller. Typestate checking of
machine code. In Proceedings of the European
Symposium on Programming, pages 335-351, 2001.

[11]

[12]

[13]



