
Testing, Abstraction, Theorem Proving: Better Together!

Greta Yorsh
∗

Tel Aviv University
Israel

gretay@post.tau.ac.il

Thomas Ball
Microsoft Research

Redmond, US

tball@microsoft.com

Mooly Sagiv
Tel Aviv University

Israel

msagiv@post.tau.ac.il

ABSTRACT
We present a method for static program analysis that leverages tests
and concrete program executions. State abstractions generalize the
set of program states obtained from concrete executions. A theo-
rem prover then checks that the generalized set of concrete states
covers all potential executions and satisfies additional safety prop-
erties. Our method finds the same potential errors as the most-
precise abstract interpreter for a given abstraction and is potentially
more efficient. Additionally, it provides a new way to tune the per-
formance of the analysis by alternating between concrete execution
and theorem proving. We have implemented our technique in a
prototype for checking properties of C# programs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing; D.2.4 [Software Engi-
neering]: Software/Program Verification—abstract interpretation

General Terms
reliability, verification

Keywords
program analysis, testing, abstraction, theorem prover, abstract in-
terpretation, software fault injection, fabricated states, adequacy
criteria, coverage, state-based coverage

1. INTRODUCTION
Recently, there has been much interest in combining dynamic

and static methods for analyzing programs [28, 16, 8, 29]. Dy-
namic analysis (or testing) is based on concrete program execu-
tions and underapproximates the set of program behaviors. That
is, if BP denotes the set of all behaviors of a program P then dy-
namic analysis explores a finite subset of BP . Static analysis is
based on the abstract interpretation [6] of program behavior and
typically overapproximates the set of program behaviors. That is,

∗This research was supported by The Israel Science Foundation
(grant No 304/03).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’06, July 17–20, 2006, Portland, Maine, USA.
Copyright 2006 ACM 1-59593-263-1/06/0007 ...$5.00.

static analysis has the effect of analyzing a superset of BP , which
may include infeasible behaviors that cannot be exhibited by the
program.

The pros and cons of the two techniques are clear. If dynamic
analysis detects an error then the error is real. However, dynamic
analysis cannot provide a proof of the absence of errors. On the
other hand, if static analysis does not find an error (of a particular
kind) in the superset ofBP thenBP clearly cannot contain an error
(of that same kind). However, if static analysis detects an error, it
may be a false error as the behavior that induces the error may lie
outside BP .

We show how to perform static analysis using a novel combina-
tion of dynamic analysis, abstraction, and an automated theorem
prover. Our technique is oriented towards finding a proof rather
than detecting real errors. As a result, it has the pros and cons of
a static analysis, but leverages dynamic analysis as its execution
vehicle.

Our method uses state abstractions to generalize the set of pro-
gram states gathered by monitoring concrete executions of a pro-
gram P . An automated theorem prover is used to check that the
generalized set of concrete states covers all potential executions of
P (essentially the set BP) and satisfies additional safety proper-
ties. If this check succeeds, we have a proof that all executions of
the program satisfy the given properties.

However, if this check fails, our technique creates a fabricated
concrete state from which we continue concrete program execution.
We use a model generator (a theorem prover that can produce con-
crete counterexamples) to create a fabricated state so as to increase
the coverage. Under some standard assumptions (detailed later)
our method is guaranteed to converge and obtain the same result as
a standard abstract interpretation of the program P . In particular,
our method produces the same amount of false alarms as a stan-
dard abstract interpretation (over the same abstract domain). It is
noteworthy that we can make this guarantee even if we prematurely
halt concrete execution in order to perform the coverage check. In
this way, we can control the amount of time spent executing the
program vs. the amount of time spent calling the theorem prover.

We make the following contributions:

• We explain the result of abstract interpretation in terms of
concrete executions and abstraction. This sheds some light
on the trade-offs that arise when combining dynamic and sta-
tic analyses.

• The result of our method is sound and as precise as the re-
sult of the most-precise abstract interpreter (over the same
abstract domain).

• We implemented our method in two platforms: the TVLA
system for generating shape analyses [24] and the XRT sys-

145

tem for generating unit tests [18]. The XRT implementation
supports all C# features including pointers and procedures. It
employs the Simplify theorem prover [10] and demonstrates
the feasibility of our approach.

• Our method provides an effective test for abstraction-based
adequacy of a test set, as defined by [12, 1].

• We show that our method can find safety proofs with much
simpler abstractions than those used by [29], which uses a
combination of concrete execution, abstraction and theorem
proving to find bisimilar abstractions of programs.

Section 2 gives a high-level overview of our method and illus-
trates it using a simple example. Section 3 formalizes our method
using the framework of abstract intepretation and describe a sym-
bolic algorithm for it. Section 4 discusses some of the practical
issues that arise when implementing the algorithm and describes
our implementation on top of the XRT infrastructure. Section 5
presents a set of examples illustrating the benefits of our approach.
Section 6 compares our approach to related work and Section 7
concludes the paper.

2. OVERVIEW
It is well known that the problem of proving safety properties can

be reduced to proving that a program point is unreachable, which is
undecidable in general. Fortunately, these properties often can be
proved using abstraction to overapproximate the reachable concrete
states of a program.

Abstraction and abstract interpretation [6] are key tools for au-
tomatically proving properties of systems, both for hardware [5,
9] and software systems [27]. An abstraction function αmaps con-
crete program states to abstract states. An abstract state is reachable
if it is the abstraction of some reachable concrete state. Identifying
exactly the reachable abstract states is undecidable in general. Ab-
stract interpretation provides a way to compute a superset of all
reachable abstract states. Thus, the result of abstract interpretation
can be used to check safety properties: if safety properties hold on
(a superset of) all reachable abstract states, then these safety prop-
erties also hold on all reachable concrete states.

2.1 Analysis Method
We propose a new method for computing a superset of all reach-

able abstract states. In contrast to abstract interpretation, which
“executes” the program on abstract states, our method executes
the program on concrete states, and then performs abstraction, as
shown in Fig. 1. Our method has five steps:

Execute. Given a program P and a set of test inputs T , execute
the program and collect the concrete program states CT obtained
during execution.

Abstract. We say that an abstract state is covered by a set of tests
T if it is the abstraction of a concrete state reachable from some
state in T . Our method uses the abstraction function α to obtain
the set of abstract states that correspond toCT : AT = α(CT), i.e.,
AT is the set of abstract states covered by T .

Check Adequacy. We define an abstraction-based adequacy
criteria for a set of tests. A set of tests T is adequate under a
given abstraction if all reachable abstract states are covered by T .
Note that if a set of tests T is adequate then safety properties can be
(conservatively) checked on AT —the abstract states covered by T .

Figure 1: Overview of the method. CT denotes the set of con-
crete states reachable from the states in T . AT is the set of
abstract states covered by T , i.e., AT = α(CT).

Our method checks a condition that implies adequacy. We check
that AT is invariant under the program P : if a concrete state is
represented by AT then its successor states also are represented by
AT . Formally, we check that for all concrete states c and c′ such
that α({c}) ⊆ AT and c′ is a successor state of c in the program
P , α({c′}) ⊆ AT . This condition is expressed as a logical formula
using strongest postconditions [11], such that if the formula is valid
then T is adequate. The validity of the formula is checked using a
theorem prover.

Fabricate Tests. It is a fundamental (but often ignored) fact that
abstract interpretation proves properties about unreachable as well
as reachable abstract states. Testing can only cover reachable ab-
stract states. To make abstraction-based testing as powerful as ab-
stract interpretation, our method creates fabricated states, interme-
diate program states that are not necessarily reachable states of the
program.

More precisely, if the test set T is not adequate then there are
concrete states c and c′ such that α({c}) ⊆ AT and c′ is a suc-
cessor state of c in P , but α({c′}) �⊆ AT . Our method finds
such a state c′ using a model generator, i.e., a theorem prover that
produces a concrete counter-example for invalid formulas. Then,
our method augments T with c′ and repeats the process, as shown
in Fig. 1. This guarantees that the coverage increases in the next it-
eration, and that the process terminates with an adequate set T and
the corresponding AT (for finite-height abstractions or abstraction
with widening).

Check Safety Properties. We check, using a theorem prover,
whether the covered abstract statesAT satisfy the safety properties.
This safety check can be performed either as part of an adequacy
check, or after an adequate test set is obtained. If the safety check
succeeds for an adequate test set, we have proven safety properties
of the program based on the information obtained from executing
the test set. If the safety check fails, we report a potential error,
which may indicate a real error in the program or a false alarm, due
to the abstraction.

Our analysis (and abstract interpretation) does not distinguish
between a false error and a real error. It is possible to combine our
method (and abstract interpretation) with an analysis for classifying
potential errors into real errors and false alarms. In this paper, we

146

assume that the abstraction α is given. It is possible to combine our
method with abstraction refinement to find a suitable abstraction.

2.2 Example
We now illustrate our basic method using a simple example.

Consider the following C procedure foo which contains a null
pointer dereference error at line G:

foo(int x, int y) {
int *px = NULL;

A: x = x + 1;
B: if (x<4)
C: px = &x;
D: if (px==&y)
E: x = x+1;
F: if (x<5)
G: *px = *px+1;
H: return;

}

The state space of this procedure is described by a quadruple
(pc, x, y, px), where pc is the value of the program counter ranging
over the labels A–H, x and y are the integer values of variables
x and y, and px is the value of px of type integer pointer. To
simplify the exposition, we assume that foo can be called with
any integer values x and y, which defines the set of all possible
initial states. When foo is called with x = 3, the statement at
label G will execute with px = NULL, causing a null pointer
dereference. Note that the conditional at label D always evaluates
false, so the assignment statement at label E is dead code.

We use the following abstraction function:

α(C) = {(pc, x < 5, px = NULL) | (pc, x, y, px) ∈ C}
Here, a concrete program state is mapped to a triple of values for the
following expressions: the program counter pc (ranging over eight
labels), the predicate (x < 5) and the predicate (px = NULL).
A predicate evaluates to true (t) or false (f). For a singleton set C,
we abuse the notations slightly by writing α(pc, x, y, px) instead
of α({(pc, x, y, px)}).

The abstract state space is finite, consists of 8× 2× 2 = 32 pos-
sible triples. The reachable abstract states are shown in Fig. 2(a).
Our method does not construct these abstract states beforehand.
Instead, we execute the procedure on a set of tests and compute,
using α, the abstraction of the concrete states encountered during
test executions.

Now consider executing foo(2,0), foo(6,0),foo(11,0),
that define the test set T = {(A, 2, 0, NULL), (A, 6, 0, NULL),
(A, 11, 0, NULL)}. The test set T does not uncover the null-
pointer dereference in the program. The abstract states covered
by the execution of T , denoted by AT , are marked in Fig. 2(a) with
bold-circles. Note that the error abstract state (G, t, t) is not inAT .

2.2.1 Finding a Bug
Next, we check whether the test set T is adequate under α. That

is, is the set of covered abstract states AT an invariant? This check
fails, because there is a concrete state b such that α({b}) = (B, t, t),
a covered abstract state, from which in one step of the program it is
possible to reach a concrete state d such that α({d}) = (D, t, t),
an uncovered abstract state. Using a model generator, our method
fabricates such a pair of concrete states, say b = (B, 4, 0, NULL)
and d = (D, 4, 0, NULL). Execution from state b leads to a null
pointer dereference error at label G, as shown in Fig. 2(a). Thus,
our analysis reports a potential error. In this case the program con-
tains a real error, because the state b is a reachable concrete state
(reachable from the initial state (A, 3, 0, NULL)).

2.2.2 Finding a Proof
Now, let us consider what our technique does on a version of

the above procedure obtained by modifying the conditional at label
B from (x < 4) to (x < 5), which eliminates the null pointer
dereference. Let us call the new version fixed foo. The abstract
state space of fixed foo, obtained using the abstraction function
α as before, is shown in Fig. 2(b).

Again, the set of covered abstract states is not an invariant. In
particular, there is a concrete state d′ such that α({d′}) = (D, t, f)
from which in one step of the program it is possible to reach a con-
crete state e′ such that α({e′}) = (E, t, f), an uncovered abstract
state. A pair that satisfies this constraint is d′ = (D, 4, 0,&y) and
e′ = (E, 4, 0,&y). Note that neither of these states is a reachable
concrete state, as the address of the variable y is never assigned to
the variable px in the program, and thus the label E is not reach-
able. However, in the abstract state space, the label E is reachable
whenever the predicate (px = NULL) is false at label D.

Concrete execution from the state d′ covers the additional ab-
stract states: (E, t, f), (F, f, f), and (H, f, f). At this point, our
method shows that the set of covered abstract states is an invariant.
This implies that the abstract states represent all reachable concrete
states of fixed foo. Since these abstract states do not contain
the error state (G, t, t), we have found a proof that there is no null
pointer dereference at label G.

Interestingly, (H, f, f) represents some reachable concrete states,
i.e., there exists a test input (not in our test set) that covers (H,f, f).
However, finding such an input is a non-trivial task, because to
cover (H,f, f) fixed foo must be called with precisely x = 3
as an argument (and any value of y). Random or symbolic path-
exploration techniques can be used to address the problem, but we
avoid this problem using fabrication. The abstract state (H,f, f)
is covered by a test execution that starts from the fabricated state
d′. It shows that we can benefit from fabricated states to discover
abstract states that are reachable via rare executions.

Moreover, execution of d′ covers the abstract state (F, f, f),
which does not represent any reachable concrete state (although the
statement at label F is reachable). Fortunately, all executions from
this abstract state are safe, because px is notNULL in this abstract
state. That is, the current abstraction shows the absence of errors
in all feasible executions as well as in some infeasible executions.
This shows the strength of our method: we obtain a proof using a
much coarser abstraction than the existing methods [29, 1] that are
based only on feasible executions. In this example, these methods
would unnecessarily refine the abstraction, even though the current
abstraction is sufficient to prove the absence of null pointer deref-
erences (and our method obtains a proof).

2.2.3 Finding A False Error
Now, let us show an abstraction function that is not precise enough

to prove the correctness of the (corrected) program fixed foo
above. Suppose our abstraction function is:

α′(C) = {(pc, x < 10, px = NULL) | (pc, x, y, px) ∈ C}
In this case, the abstraction function cannot precisely track the rela-
tionship between the value of x and the predicate (px = NULL)
in the program. Fig. 2(c) shows the reachable abstract states for
this new abstraction function.

Using a theorem prover and a model generator, we find a con-
crete state f ′ such that α′({f ′}) = (F, t, t) from which in one
step of the program it is possible to reach a concrete state g such
that α′({g′}) = (G, t, t), an uncovered abstract state. A pair
that satisfies this constraint is f ′ = (F, 4, 0, NULL) and g′ =
(G, 4, 0, NULL). Note that f ′ is not a reachable concrete state.

147

(a) (b) (c)

Figure 2: Reachable abstract states for (a) finding a null pointer dereference in foo using α(pc, x, y, px) = (pc, x < 5, px =
NULL); (b) finding a proof for fixed foo using α(pc, x, y, px) = (pc, x < 5, px = NULL); (c) finding a false er-
ror in fixed foo using α′(pc, x, y, px) = (pc, x < 10, px = NULL). Abstract states covered by the set of tests T =
{(A, 2, 0, NULL), (A, 6, 0, NULL), (A, 11, 0, NULL)} are marked with bold-circles.

Running the program from state f ′ will cause a null pointer deref-
erence to occur at label G. At this point, our analysis reports a po-
tential error. This false error also would be reported by an abstract
interpreter using the abstraction function α′.

Our analysis does not distinguish between a false error such as
this one, and a real error such as the one in Section 2.2.1. Both are
reported as potential errors. In particular, our method may not dis-
cover the test input (A, 3, 0, NULL) mentioned in Section 2.2.1.

3. FORMAL DESCRIPTION
This section formalizes our method and compares it to the tradi-

tional static analysis by abstract interpretation. Section 3.1 quickly
reviews relevant terminology about abstract interpretation. Sec-
tion 3.2 presents an idealized version of our method and discusses
its basic properties. It does not provide an effective algorithm, as it
uses an incomputable operation. Section 3.3 discusses how to real-
ize the method as a symbolic algorithm which employs a theorem
prover and a model generator.

3.1 Abstraction and Concretization
Let C be a set of potential concrete states of program P . Let A

be a set of potential abstract values.
In abstract interpretation, we usually assume that A forms a lat-

tice, with partial order �, meet � and join � operations (see Ap-
pendix A). In the previous section, we used a powerset lattice, in
which an element (abstract value) is a set of abstract states, ordered
by set inclusion ⊆, meet is set-intersection ∩, and join is set-union
∪.

An abstraction function α : 2C → A yields an abstract value
that represents a set of concrete states. A concretization function
γ : A → 2C yields a set of concrete states that an abstract value
represents. The partial order on A satisfies for all a, a′ ∈ A,

a � a′ ⇐⇒ γ(a) ⊆ γ(a′). (1)

The concretization and the abstraction functions form a Galois

connection between 2C and A, i.e., for all a ∈ A and X ⊆ C:

α(X) � a ⇐⇒ X ⊆ γ(a) (2)

This implies that X ⊆ γ(α(X)) if and only if α(γ(a)) � a. That
is, abstraction followed by concretization potentially yields more
states, and concretization followed by abstraction potentially yields
a more precise abstract value.

Given an abstraction function α, it is easy to define the corre-
sponding concretization function: γ(a) = {c | α({c}) � a}.
For example, using the abstraction function α′ from Section 2.2.3,
γ({(G, f, t)}) = {(G, i, j,NULL) | i ≥ 10}.

To simplify the presentation, we assume that an abstract value
in A collectively describes states at all program points, rather than
having a separate abstract value for each program counter. This can
be achieved by encoding the program counter in the representation
of a concrete state C, as we did in the previous section.

The program P defines a transition relation on concrete states
→P : C × C. For σ, σ′ ∈ C, we say that σ′ is a successor of σ if
σ →P σ′. Intuitively, σ′ is a result of executing a single statement
of P in the state σ. We define the function fP : C → C as follows:

fP (X) = {σ′ | σ →P σ′, σ ∈ X} ∪ {X}

Note that fP is monotone. We drop the subscript P when it is
understood from the context. The set of concrete states reach-
able from X ⊆ C is the least fixpoint of f w.r.t. X, denoted by
LFPX(f).

Let I ⊆ C be the set of all possible initial states of a program
P . The meaning of the program P is the set of all concrete states
reachable from some initial state: LFPI(f).

An abstract value a ∈ A is a sound overapproximation of P if a
represents all concrete states reachable from I (but possibly other
states):

LFPI(f) ⊆ γ(a). (3)

148

[1]procedure basic(T0)
[2] a := ⊥
[3] T := T0

[4] while(true) begin
[5] C := Execute(f,T)
[6] a := a � α(C)
[7] if exists σ ∈ f(γ(a)) s.t. σ /∈ γ(a)
[8] then T := {σ}
[9] else return a
[10] end

Figure 3: The basic procedure. Here, T0, T, C ⊆ C, and a ∈ A.
If α(T0) = α(I), then the result of the procedure is a sound
approximation of P .

An abstract value a ∈ A is invariant under P if

f(γ(a)) ⊆ γ(a) (4)

THEOREM 3.1. (Soundness) If an abstract value b ∈ A is in-
variant under P and I ⊆ γ(b) then b is a sound overapproximation
of P .

3.2 Basic Procedure
Fig. 3 shows a high-level description of our method. Implemen-

tation details are discussed in the next sections. We assume that
the basic procedure is called with a finite set T0 of initial states
(T0 ⊆ I), such that α(T0) = α(I).

Line [5] corresponds to the Execute step, described in Sec-
tion 2.1. Formally, Execute(f, T) returns a subset of the states
reachable from T that contains at least the states in T :

Execute(f, T) ⊆ LFPT (f) and T ⊆ Execute(f, T). (5)

Note that it is not necessary (and sometimes impossible) to collect
all states reachable from T . In particular, this step allows us to han-
dle non-terminating executions or very long running executions.

In line [6] the abstraction of the obtained concrete states is com-
puted using α. This corresponds to the Abstract step described in
Section 2.1. The procedure terminates when it is not possible to
fabricate a state σ that satisfies the condition in line [7], i.e., a is
invariant under P . This implies that a is a sound approximation of
the reachable states of P (by Theorem 3.1).

Furthermore, the procedure computes the same abstract value
that is computed by the most-precise abstract interpreter of P for
the given abstraction, as stated by the following theorem:

THEOREM 3.2. Let f � : A → A be defined by f � = α ◦ f ◦ γ.
The procedure in Fig. 3 computes the least fixpoint of f � w.r.t. α(I):
LFPα(I)(f

�).

The particular choice of a fabricated concrete state in line [7]
does not affect the final result of the procedure, but it may affect the
number of iterations needed to find the result, as explained below.

Let Sa be the set of all possible fabricated states for an abstract
value a, i.e., the set of states σ that satisfy the condition in line [7]:

Sa
def
= {σ | σ ∈ f(γ(a)), σ /∈ γ(a)}

In line [8], a single fabricated state is chosen from Sa. It is easy
to modify the procedure to work with several fabricated states to-
gether in the same iteration. Because fabricated states are not cov-
ered by the abstract values collected so far, the coverage strictly
increases in successive iterations.

THEOREM 3.3. If the lattice A has a finite height, the proce-
dure in Fig. 3 terminates.

Remark. If the lattice A admits infinite ascending chains (e.g.,
polyhedra [7]), it is possible to use standard widening techniques
to enforce and accelerate termination of our procedure, sacrificing
the precision of its result. Let � : A×A → A denote the widening
operator on A (see Appendix A). We replace line [6] with a :=
a�α(C). The result a of the procedure satisfies LFPα(I)(f

�) � a,
but the result a may be less precise than LFPα(I)(f

�).
Choosing any state in Sa strictly increases the coverage, but

some states increase the coverage more than others. Intuitively,
we would like to choose a fabricated state that covers as many new
abstract states as possible, “jumping” higher in the abstract lattice.
A good choice of fabricated states reduces the number of the itera-
tions of the procedure, and thus, the number of calls to a theorem
prover and a model generator.

3.3 Symbolic Procedure
For all abstractions we are aware of, the function α is efficiently

computable given a (finite) set of concrete states, represented ex-
plicitly. Note that applying α does not require the use of a theorem
prover.

Nonetheless, as mentioned before, the procedure in Fig. 3 does
not provide an effective algorithm. In particular, the γ operation
used in line [7] is not computable, as γ(a) may be infinite. We
now show how to implement line [7] symbolically, using a theo-
rem prover and a model generator.

Symbolic Characterization. Concrete program states can be
represented as logical structures, in which constant symbols model
program variables. Thus, sets of concrete states can be described
by logical formulas in some logic L (e.g., first-order logic). The
concretization function γ can be expressed symbolically, i.e., for
every a ∈ A, there exists a formula in L, denoted by �γ(a), that
exactly represents a: for all σ ∈ C,

σ |= �γ(a) if and only if σ ∈ γ(a) (6)

In the example from Section 2.2, with abstraction function α,
�γ can be expressed as a quantifier-free first-order formula, inter-
preted over integers. The constant symbols x and y model the
values of the corresponding program variables. The constant sym-
bols A–H model each of the program points, and an additional
constant symbol pc models the program counter.1 Finally, the fact
px = NULL can be encoded with a corresponding Boolean. For
instance, �γ({(G, f, t)}) is the formula (pc = G) ∧ ¬(x < 5) ∧
(px = NULL).

Meaning of Program Statements. The meaning of a pro-
gram can be expressed as a formula transformer, SP : P ×L → L,
which defines the strongest postcondition [11]: for every formula
ϕ ∈ L, a concrete state σ′ satisfies SP(P,ϕ) if and only if there
exists a concrete state σ such that σ′ is a successor state of σ in P
and σ satisfies ϕ. Intuitively, SP describes the result of executing
a single statement of P on a state that satisfies ϕ. For example,
SP(x = x + 1, x > 5) is the formula x > 6.

Symbolically Checking for Invariance. Using the �γ and
SP operations, we can symbolically express the fact that abstract
value a ∈ A is an invariant:

SP(P,�γ(a)) ⇒ �γ(a) (7)

1Not every interpretation of these constants is legal; to rule out
illegal interpretations of pc, the following axiom can be used: pc =
A ∨ pc = B ∨ . . . ∨ pc = H .

149

The formula (7) is valid if and only if a is an invariant. 2

Given a program P and an abstract value a, our method can au-
tomatically generate the formula in (7). Moreover, it can check the
validity of (7) automatically using a theorem prover for L. If the
validity check fails, then a model generator can be used to fabricate
a state that satisfies �γ(a) and has a successor that does not satisfy
�γ(a). Formally, the fabricated state satisfies the negation of (7):

SP(P, �γ(a)) ∧ ¬�γ(a) (8)

For example, in Section 2.2.1, if a is {(B, t, t)}, then the formula
�γ(a) is (pc = B ∧ x < 5 ∧ px = NULL). The strongest post-
condition of this formula and the statement if (x < 4) at label
B is the formula sp

def
= (pc = C ∧ x < 4∧ px = NULL)∨ (pc =

D∧x = 4∧px = NULL). Clearly, sp⇒ �γ(a) is not valid. This
allows us to fabricate a state, say d = (D, 4, 0, NULL), such that
d |= sp ∧ ¬(pc = B ∧ x < 5 ∧ px = NULL).

Symbolically Checking Safety Properties. In our setting,
the safety properties of interest also can be expressed by a formula
ϕ ∈ L. For example, in Section 2.2 the safety property can be
expressed by the formula ϕ

def
= ¬(pc = G ∧ px = NULL).

If a ∈ A is a sound approximation of P , and the formula �γ(a) ⇒
ϕ is valid, then all reachable concrete states of P satisfy the safety
properties ϕ. In Section 2.2.2, our method obtains a set of ab-
stract states a for which �γ(a) ⇒ ϕ is valid. In Section 2.2.3, one
of the abstract states covered by our method is (G, t, t), for which
(pc = G∧x < 10∧px = NULL) ⇒ ¬(pc = G∧px = NULL)
is not valid, and our method reports a potential error.

In practice, there are automatic tools for checking validity and
generating models (even if the logic L is undecidable), which have
certain limitations, as discussed in the next section.

4. TOWARDS A REALISTIC
IMPLEMENTATION

In this section, we discuss some of the practical issues that arise
when implementing the algorithm described in Section 3.

4.1 Program Analysis Infrastructure
Our method requires an infrastructure that supports: (1) monitor-

ing of concrete program states in concrete executions to compute
abstract state coverage; (2) symbolic execution of loop-free code
fragments to compute SP; (3) state manipulation to create fabri-
cated states.

Explicit-state model checkers such as SPIN [21], CMC [26],
JavaPathFinder [34], XRT [18], which perform systematic and ex-
haustive testing, provide a good starting point (though not all sup-
port symbolic execution). A model checker analyzes several execu-
tions of the program at once, and controls the order in which these
concrete executions advance (e.g., DFS, BFS). A model checker
usually manipulates a representation of concrete states, which comes
in handy for fabrication of states. Our implementation uses XRT,
see Section 4.5.

4.2 Cutpoints
Section 3 simplified the discussion by encoding the program

counter in the abstract value. This encoding allows us to keep
abstract states for each program point. In practice, it is not nec-
essary to track all program points. We can choose a designated set

2Alternatively, a formula based on the weakest (liberal) precondi-
tion can be used.

of program points, called cutpoints, where the abstraction is com-
puted. As in deductive verification, a minimal set of cutpoints is a
set which cuts every cycle in a program’s control flow graph [15].

The runtime overhead of computing abstract state coverage de-
creases when there are fewer cutpoints. Furthermore, having fewer
cutpoints potentially improves the precision of our method, as the
abstraction of a composition of two statements is usually more pre-
cise than a composition of their abstractions.

The check that an abstract value is an invariant is adapted ac-
cording to the set of cutpoints: the strongest postcondition formulas
SP in (7) describe the result of executing a sequence of statements
from one cutpoint to the next (and not a single statement, as before).
Note that states are fabricated only at cutpoints.

Instead of checking the validity of a large formula (7), our method
can make several validity checks with smaller formulas, ψL, one
for each cutpoint L. Intuitively, ψL describes a “local” invariant,
under the loop-free code fragment which starts at L. The formula
ψL involves only abstract states related to L and to the cutpoints
immediately following L in the control-flow graph of the program.
Thus, in successive iterations, only the checks that involve the new
abstract states need to be repeated.

4.3 On-the-fly Abstraction
We previously presented execution and abstraction as separate

steps (line [5] and line [6]of Fig. 3). In practice, abstraction can
be computed on the fly during program execution. The idea is to
monitor the execution: when a cutpoint is reached, we pause the
execution to compute the abstraction of the current state, conjoin
the resulting abstract value with the abstract value collected so far,
and continue the execution. This way, concrete states encountered
during program execution need not be stored (only abstract values
need to be stored).

4.4 Employing a Theorem Prover
The success of our method depends on having a theorem prover

and a model generator which can generate a concrete counterexam-
ple to validity of a formula. Technically, there are off-the-shelf au-
tomatic theorem provers that can be used, e.g., SPASS [35], Vam-
pire [30], Simplify [10]. Unfortunately, most such theorem provers
do not produce concrete counterexamples for invalid formulas (with
the exception of Darwin [3]). Instead, a separate tool for model
generation can be used (e.g., Paradox [4]).

For certain abstractions, the queries posed by our method can be
expressed in a decidable logic, which guarantees a (terminating)
decision procedure. Additionally, the following difficulties arise
when using theorem provers and model generators:

(A) The theorem prover might fail to prove validity of a (valid)
formula (e.g., Simplify [10] might return “invalid” for a valid
formula with quantifiers).

(B) The theorem prover might timeout without a conclusive an-
swer, because it exceeds the time or the amount of resources
allocated for it.

(C) The model generator might fail to fabricate a state that satis-
fies (8), (e.g., because the formula is, in fact, valid, but theo-
rem prover failed to prove its validity).

If a theorem prover fails (due to (A) or (B) above) when check-
ing safety properties, our method may produce a false error report.
Even if a theorem prover fails when checking that the abstract value
is an invariant, our method still tries to fabricate a state that satisfies
(8). If model generation succeeds, the analysis continues as before.

150

Failure of the model generator to fabricate a state can be handled
as follows:

• Fabricate a state that satisfies ¬�γ(a). This guarantees that the
coverage increases in each iteration, and the analysis eventu-
ally terminates, but it might fail to produce the most-precise
result (because the fabricated state may not have a predeces-
sor in any covered state).

• Fabricate some concrete state, say using a random generator,
sacrificing both termination of the analysis and its precision.
However, if the analysis terminates, its result still is sound.

• Use a hybrid approach which combines concrete execution
and abstract interpretation, as discussed in Section 5.3.

4.5 Prototype Implementation based on XRT
We have implemented our method on top of the XRT frame-

work [18], an extensible framework for explicit and symbolic model
checking of programs, represented in Microsoft’s common inter-
mediate language (CIL). XRT processes .NET managed assem-
blies, and provides means for analyzing, rewriting, and executing
programs. Our implementation takes advantage of all these fea-
tures.

Our implementation uses predicate abstraction [17] (without re-
finement), and supports user-defined predicates. It also can auto-
matically generate a default set of predicates by a backwards data-
flow analysis from the conditional branches that infers the predi-
cates governing these branches.

In our implementation, predicates are defined as C# methods,
called probes. Probes return Boolean values, have no side-effects
and contain no loops or method calls. Each cutpoint is instrumented
to call the probe methods, so as to evaluate the appropriate predi-
cates on the current state. We compute the abstraction of the con-
crete execution on-the-fly: the XRT runtime pauses execution im-
mediately after a call to a probe method returns, and its return value
is used to update the abstract state.

When predicates are given as logical formulas, it is easy to im-
plement �γ for predicate abstraction, but in our case predicates are
given as CIL code. The symbolic execution of probe methods by
XRT gives a natural way to construct logical formulas for predi-
cates. The symbolic execution mode of XRT also provides strongest
postconditions that our method uses to check whether the abstract
value is invariant. To check validity, we use the Simplify theorem
prover [10]. To fabricate states, we implemented a naı̈ve model
generator within XRT, also based on Simplify.

Our implementation places cutpoints: (i) before each loop body
(to cut cycles); (ii) on entry and exit of every method, (iii) before
and after every method call, and (iv) at each program point that may
potentially violate safety properties, such as a pointer dereference
or an array access. To handle method calls, we have implemented
0-CFL Reachability [27], utilizing the cutpoints of (ii,iii).

5. WHY “BETTER TOGETHER”?
This section discusses some of the benefits of our method.

5.1 Unit-Testing with Fabrication
A major application of XRT is in the area of unit testing. There-

fore, to evaluate the implementation of our method, we adapted the
method to operate on a separate class using unit-tests for that class
(rather than analyzing a closed application using its test inputs). A
similar approach can be applied to analyze an open system or a
component.

public class BoundedStack {
private int[] elems;
private int size;
private int max;
...
public BoundedStack(int capacity) {

size = 0;
// fixme: if (capacity <= 0) capacity = 2;
max = capacity;
elems=new int[max];

}
public void pop() {

// fixme: if (size >= 0)
size--;

}
public void push(int k) {

int index;
bool alreadyMember;
alreadyMember = false;
for(index=0; index<size; index++) {
if(k==elems[index]) {
alreadyMember = true;
break;

}
}
if (alreadyMember) {
for (int j=index; j<size-1; j++) {

elems[j] = elems[j+1];
}
elems[size-1] = k;

}
else {
if (size < max) {

L1: elems[size] = k;
size++;
return;

} else {
return;

}
}

}
}

Figure 4: Implementation of a bounded stack using fixed-size
array (abbreviated). The comments show the code needed to
fix the errors.

The idea is to invoke each method of the class on all the concrete
states obtained on exit of any method of this class. We illustrate the
idea on the implementation of a bounded stack, used previously in
the literature.

EXAMPLE 5.1. Fig. 4 shows an abbreviated version of the code
that implements a bounded stack, using a fixed-size array.

A bounded stack can normally be ‘empty’, ‘partially full’ or
‘full’. We used predicate abstraction to capture these states, and
distinguish them from illegal states in which size is out of the
bounds of elems.

The bounded stack supports the usual operations, but it does not
provide any exceptional behavior. Instead, if an operation is ap-
plied in an inappropriate state, it has no effect. For example, if the
stack is full, the push operation has no effect. However, the pop
method incorrectly handles popping an empty stack. This problem
was not exhibited by the provided unit tests, because pop is never
called with an empty stack.

We analyzed the class using our implementation based on XRT,
checking for IndexOutOfRangeException. In the first itera-
tion, our method fabricates a state σ on exit of pop, with an empty

151

stack. Then, it executes the method pop again on the fabricated
state σ, obtaining a new state σ′ on the exit of pop, with size < 0
(no runtime exception occurs). Then, it executes the method push
on σ′, causing an IndexOutOfRangeException on line L1.

After fixing the error in pop, our analysis automatically proves
absence of IndexOutOfRangeException in this example, us-
ing four fabricated states, and the default predicates, as mentioned
in Section 4.5. If the maximal size provided to the constructor is
negative, it throws OverflowException exception, but this er-
ror should not be reported by the analysis, which tracks different
exceptions.

This example shows that our analysis can deal with unexpected
failures, e.g., when a concrete execution throws an exception that
is not tracked by the analysis. If such exception is thrown in a con-
crete execution, our analysis can fabricate any state in the following
program point, and continue the execution from it. This fabrication
is easy because it does not place any constraints on the fabricated
state. It provides a sound and (perhaps, surprisingly) most-precise
result, because behavior that is not modeled is treated by a sound
abstraction as if “anything can happen”.

Upon termination of the analysis, the abstract states on the entry
and exit of all methods are the same. This set of abstract states, in
fact, represents the class invariants, under certain conditions about
the class, stated in [25]. The analysis can output the inferred class
invariants in the form of logical formulas, by computing �γ of the
relevant abstract states.

Note that, as we are using state-based abstractions, our approach
cannot learn method-call order. Also, our method analyzes each
class independently of the actual clients of this class. The approach
may also report on potential errors, that do not occur in any actual
client of this class. The advantage of this approach is that it identi-
fies potential errors early in the development process, even before
the client is written. If our method succeeds, it provides a proof of
safety for the class in any client. This proof can be used to perform
assume-guarantee reasoning.

Also, in the setting of unit-testing, it is easier to classify a poten-
tial error reported by the analysis, because the context of all method
calls (a client code) is arbitrary. In the bounded stack example, real
errors were detected by a fabricated execution.

Recall that the purpose of fabrication is to find a proof faster.
Inherent to this approach is the fact that a fabricated state may be
unreachable from any initial state of the program. However, states
that are fabricated on a method entry can be used in unit-test gen-
eration.

5.2 Avoiding Unnecessary Abstraction
Refinement

We are not the first to demonstrate that concrete execution plus
abstraction can be used to verify program properties [22, 29, 1].
However, previous work in the area required much stronger ab-
stractions than necessary to verify the safety properties of interest.

One approach is to find an abstract system that is bisimilar to
the underlying concrete system, using automated refinement of ab-
stractions [22, 29]. For deterministic systems, this means that the
concrete system and abstract system have identical execution traces.
The advantage of [22, 29] is that it reports only real errors. How-
ever, this technique is often too strong for proving safety properties.
Even for proving a simple program, bisimulation might require a
complex abstraction generated via many iterations of abstraction-
refinement, whereas our technique can achieve proofs with a coarser
abstraction.

As an example, we apply our method to the Bakery mutual exclu-
sion protocol for two processes, which also was analyzed in [29].

Figure 5: Reachable abstract states of two-process Bakery pro-
tocol, using an abstraction function x ≤ y.

The guarded command representation of the protocol is:

Process1 :
pc1 = A �→ x1 := x2;
pc1 = B �→ x1 := x1 + 1;
pc1 = C ∧ x1 ≤ x2 �→ pc1 = 3
pc1 = D �→ pc1 = 0
Process2 :
pc2 = A �→ x2 := x1;
pc2 = B �→ x2 := x2 + 1;
pc2 = C ∧ x2 < x1 �→ pc1 = 3
pc2 = D �→ pc1 = 0

A concrete state of the program is (pc1, pc2, x1, x2), where pci is
the value of the program counter of process i, ranging over A−D,
and xi is the integer value of the ticket of process i, for i = 1, 2.

The safety property we check is that at most one processor can
be in the critical section: ¬(pc1 = D ∧ pc2 = D). We use the
following abstraction function, based on the predicate x ≤ y:

αbake(C) = {(pc1, pc2, x1 ≤ x2) | (pc1, pc2, x1, x2) ∈ C} (9)

Fig. 5 shows the reachable abstract states. The abstract error
states (D,D, t) and (D,D, f) are not reachable. An explicit-state
model checker easily finds a concrete execution that covers the
states marked with bold-circles, starting from the concrete state
(A,A, 0, 0). Then, our method fabricates 2 states: (C,B, 1, 0) and
(C,A, 0, 0). The first state covers the abstract state (C,B, f), and
the second state covers (C,A, t) and (D,A, t). At this point, our
method proves that the abstract states are invariant, and that they
satisfy the mutual exclusion property.

The initial abstraction used in [29] is the same as ours (9). The
method of [29] takes 4 steps of abstraction refinement to find an ab-
stract state space that is a bisimulation of the concrete state space.
The bisimilar abstract state space contains 36 abstract states, using
abstraction based on 10 predicates. We have shown that the ini-
tial abstraction is sufficient to prove mutual exclusion (without any
abstraction refinement), and the state space has only 17 abstract
states.

152

[1]n:=0;
[2]while(*) {
[3] if (*) {
[4] n := n+1;
[5] } else {
[6] if(n==500)
[7] assert(0);
[8] n:=0;
[9] }
[10]}

(a) (b)

Figure 6: (a) Example program, (b) Abstract state-space.

5.3 Hybrid Approach
For certain programs, concrete execution might go on for a long

time without covering a new abstract state, whereas abstract inter-
pretation makes progress in every step, but each step can be expen-
sive or can lose precision. An exciting application of our method is
its ability to address limitations of one approach using the other, by
interleaving concrete and abstract interpretation.

Recall from Section 3 that stopping concrete execution at any
moment does not affect termination or precision of the analysis. In
fact, to guarantee termination, it is sufficient to have C := T in
line [5]. However, covering more abstract states per iteration will
reduce the number of iterations of the algorithm.

Our idea is to monitor how many new abstract states are covered
during concrete execution. If coverage is not increasing, the con-
crete execution can be paused to check invariance. If the abstract
value obtained so far is not invariant, a hybrid method can increase
coverage by fabricating a new concrete state and continue concrete
execution from it. In this way, we can control the amount of time
spent executing the program vs. the amount of time spent calling
the theorem prover.

For example, consider the code in Fig. 6, which uses the non-
deterministic choice operation (*). A concrete execution that iter-
ates through the loop 500 times, always taking the true branch of
the if statement in line [3], and then, in the 500 + 1 iteration,
takes the false branch, reaches the assertion in line [7]. If the
false branch is taken earlier, n is reset in line [8]. The assertion in
line [7] fails in rare executions with a long trace to the error. Such
errors are difficult to discover using an explicit-state model checker
or random testing. Our hybrid approach can skip the execution of
many loop iterations that do not increase coverage.

We use predicate abstraction with the predicates n = 0, 0 <
n < 500, n = 500, and n > 500 for value of n on line [3]. Note
that the predicates divide the concrete state space into 4 partitions,
as shown in Fig. 6(b). Model checking quickly finds concrete ex-
ecution that covers the states n = 0, 0 < n < 500, but then
the concrete execution stays within these abstract states. At this
point, the hybrid approach simply fabricates a state with n = 500,
and continues model checking from it, skipping the long execution
trace that leads to it. The model checker can easily find an exe-
cution through the loop body to line [7], and reports a potential
error.

This example shows how the hybrid approach can help finding
errors faster than concrete execution. Furthermore, concrete exe-
cution can be combined with abstract interpretation, when a model
generator fails to fabricate a new state that satisfies (8).

5.4 Beyond Predicate Abstraction
Our method is applicable beyond predicate abstraction. We have

implemented another prototype, based on the TVLA system [24].
The TVLA system performs abstract interpretation using canoni-

cal abstraction [31], and supports reasoning about recursive data-
structures. We have implemented a special-purpose model genera-
tor that uses canonical abstraction to guide the search for models.
For concrete execution, we use the TVLA system in a mode where
memory abstraction is disabled. This mode faithful simulates con-
crete state-space exploration for programs, which manipulate fields
and pointers, but not integer data.

As a proof of concept, we applied the prototype to TVLA bench-
marks that manipulate singly-linked lists. A concrete state de-
scribes a memory that contains linked lists. We used four test in-
puts, each with one linked list in memory: an empty list, and lists
of length 1–3. The analysis proved the absence of null-dereferences
and absence of memory leaks (i.e., every allocated element is reach-
able from some program variable). Fig. 7 shows the results: num-
ber of fabricated states, abstract states upon termination, and the
maximal length of a list used by a concrete execution (either initial
test input, or a fabricated state).

In fact, it is sufficient to execute the programs on small lists, with
up to 7 nodes, to cover all reachable abstract states. The length
depends on the number of program variables that can point into the
same list. In other words, if the program has a error on a large list,
then it has an error on a small list, up to size 7.

6. RELATED WORK

Automated Construction of Abstract Transformers. The-
orem provers have been used for the automated construction of ab-
stract transition systems [2, 20, 36, 33], especially in parametric
abstract domains, such as predicate abstraction [17] and canoni-
cal abstraction [31], where the abstraction is defined per-program.
In many cases, an exponential number of theorem prover calls is
needed to compute the effect of a single program statement on an
abstract value in the most-precise way.

Compared to these techniques, our method can reduce the num-
ber of theorem prover calls: it obtains abstract values via concrete
execution, which does not require theorem-prover calls. A theorem
prover is used only to check that an abstract value is an invariant
(7), which requires one theorem prover call per program statement.
If the check fails, then at least one new abstract state is covered in
the next iteration. In the worst case, our method might require as
many theorem prover calls as other methods. However, if an execu-
tion from a fabricated state covers several new abstract states, our
method terminates with less theorem prover calls.

The cost of a theorem prover call made by our method is com-
parable to other methods. However, the cost of a model generation
might be higher than the cost of a validity check.

Our method is most-closely related to the algorithm presented
in [33]. Both methods rely on a model generator to “fabricate” a
concrete state that (i) is not yet represented by the abstract value
obtained so far, and (ii) is reachable in a single step from it. In this
paper, we have identified a way to cover more abstract states using
a single fabricated state, by executing the program. The method
of [33] can be described by replacing C := execute(f,T)
with C := T in line [5] of Fig. 3.

Combining Dynamic and Static Analyses. Daikon uses
dynamic analysis to detect likely invariants [14]. It executes the
program on a test set, examining the values of the concrete states,
and detects patterns and relationships among those values. It re-
ports properties that hold over execution of the given test set, but
not necessary over all program executions. In [28], likely invari-
ants produced by Diakon are used with ESC/Java [23] verifica-

153

procedure fabricated abstract maximal description
states states length

search 2 21 5 searches a list for an element with a specified value
reverse 4 57 6 reverses a singly-linked list in-situ
insert 3 58 6 creates an element with a specified value and inserts it into an ordered list
getLast 3 36 6 returns a pointer to the last element of a list
deleteAll 1 14 4 deallocates all elements in a list
delete 8 110 7 deletes an element with a specified value from a list

Figure 7: Analysis results for methods that manipulate singly-linked lists.

tion condition generator and Simplify [10] theorem prover to prove
that these are indeed invariants. Our work is similar in spirit, but
uses fabricated states and abstraction to achieve proof via a fixpoint
computation where the Daikon-ESC/Java two-step process may fail
to find a proof.

Recent work combines random test generation and concrete ex-
ecution with symbolic execution and model generation [16, 32, 8].
These methods use symbolic techniques to direct the generation of
tests towards unexplored paths in order to find errors faster. How-
ever, these methods do not use abstraction, and in general cannot
find proofs in presence of loops.

Bisimulation and Weak Reachability. Concrete execution
and abstraction are used by [22, 29, 1] to find errors and verify
program properties. All errors reported by [22, 29] are real errors,
but the technique often is too strong for proving safety, as shown
in Section 5.2. Also in [29], concrete exploration stops when it
encounters a concrete state whose abstraction was already seen be-
fore. Our method continues exploration from such a concrete state,
and may discover abstract states that were not covered before.

Another way to achieve verification is to find an abstraction and
a set of tests T that cover exactly the reachable abstract states [1].
It requires that every abstract state be testable. This is a weaker
property than bisimulation but still stronger than our method, be-
cause our method using fabricated states may cover abstract states
that are not reachable (but required for a proof).

Test Adequacy. In contrast to the traditional white-box ade-
quacy criteria (e.g., [37]), we choose an abstraction based on the
property of interest, and then define adequacy with respect to the
abstraction. When used with a powerset abstraction, our adequacy
requirement appears to be a formalization of partition-based testing
with respect to an abstraction function, where each abstract state
represents a partition.

Recently, an abstraction-based adequacy criteria All-Abstract-
States was introduced in [12], in the context of automatic test gener-
ation using a theorem prover, when the abstract states are provided
by static analysis. All-Abstract-States criterion implies the ade-
quacy criterion we defined in Section 1. Our algorithm provides an
effective way to check adequacy of a given test set.

7. CONCLUSIONS
Our method can be viewed as bridging the gap [19, 13] between

testing and verification.
Our method finds the same potential errors as the most-precise

abstract interpreter for a given abstraction. Additionally, it provides
a new way to tune performance by alternating between concrete
execution and symbolic reasoning (theorem proving).

We plan to investigate how the information obtained from fabri-
cate states can be used to (i) generate useful test inputs, (ii) classify

potential errors into false alarms and real errors, and (iii) guide ab-
straction refinement. Another direction is developing metrics based
on fabricated states, which provide feedback on the quality of the
code and its test set. Also, it is interesting to study the correlations
between fabricated states and failures.

8. REFERENCES
[1] T. Ball. A theory of predicate-complete test coverage and

generation. In 3rd International Symposium on Formal
Methods for Components and Objects, 2004.

[2] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of c programs. In SIGPLAN
Conf. on Prog. Lang. Design and Impl., pages 203–213,
2001.

[3] P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the
Model Evolution Calculus. In Stephan Schulz, Geoff
Sutcliffe, and Tanel Tammet, editors, Special Issue of the
International Journal of Artificial Intelligence Tools (IJAIT),
International Journal of Artificial Intelligence Tools, 2005.
Preprint.

[4] K. Claessen and N. Sorensson. New techniques that improve
mace-style finite model finding. In CADE-19 Workshop:
Model Computation - Principles, Algorithms, Applications,
2003.

[5] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking
and abstraction. Trans. on Prog. Lang. and Syst.,
16(5):1512–1542, 1994.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
of approximation of fixed points. In Symp. on Princ. of Prog.
Lang., pages 238–252, New York, NY, 1977. ACM Press.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Symp. on Princ.
of Prog. Lang., pages 84–96, 1978.

[8] C. Csallner and Y. Smaragdakis. Check ’n’ crash: combining
static checking and testing. In ICSE, pages 422–431, 2005.

[9] D. Dams. Abstract Interpretation and Partial Refinement for
Model Checking. PhD thesis, Technical Univ. of Eindhoven,
Eindhoven, The Netherlands, July 1996.

[10] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem
prover for program checking. Technical Report
HPL-2003-148, HP Labs, 2003.
http://research.compaq.com/SRC/esc/Simplify.html.

[11] E.W. Dijksta. A Discipline of Programming. Prentice-Hall,
1976.

[12] G. Erez. Generating concrete counter examples for arbitrary
abstract domains. Master’s thesis, Tel-Aviv University, Israel,
2004.

[13] M. D. Ernst. Static and dynamic analysis: Synergy and

154

duality. In WODA 2003: ICSE Workshop on Dynamic
Analysis, pages 24–27, Portland, OR, May 9, 2003.

[14] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. IEEE TSE, 27(2):1–25, February 2001.

[15] R. W. Floyd. Assigning meanings to programs. In J. T.
Schwartz, editor, Mathematical Aspects of Computer
Science, Proceedings of Symposia in Applied Mathematics
19, pages 19–32, Providence, 1967. American Mathematical
Society.

[16] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In SIGPLAN Conf. on Prog.
Lang. Design and Impl., pages 213–223, 2005.

[17] S. Graf and H. Saı̈di. Construction of abstract state graphs
with PVS. In CAV, pages 72–83, June 1997.

[18] W. Grieskamp, N. Tillmann, and W. Schulte. Xrt exploring
runtime for .net: Architecture and applications. In SoftMC,
2005.

[19] M. J. Harrold. Testing: a roadmap. In ICSE - Future of SE
Track, pages 61–72, 2000.

[20] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Software verification with blast. In SPIN, pages 235–239,
2003.

[21] G. J. Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, 2003.

[22] D. Lee and M. Yannakakis. Online minimization of transition
systems (extended abstract). In STOC, pages 264–274, 1992.

[23] K. R. M. Leino, G. Nelson, and J. B. Saxe. Esc/java users
manual. Technical Report 002, Compaq Systems Research
Center, 2000.

[24] T. Lev-Ami and M. Sagiv. TVLA: A system for
implementing static analyses. In Static Analysis Symp., pages
280–301, 2000. The system is available from
www.cs.tau.ac.il/∼tvla.

[25] F. Logozzo. Modular Static Analysis of Object Oriented
Languages. PhD thesis, LEcole Polytechnique, 2004.

[26] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and
D. L. Dill. Cmc: A pragmatic approach to model checking
real code. In OSDI, 2002.

[27] F. Nielson, H.R. Nielson, and C. Hankin. Principles of
Program Analysis. Springer-Verlag, 1999.

[28] J. W. Nimmer and M. D. Ernst. Invariant inference for static
checking: An empirical evaluation. In FSE 2002, pages
11–20, 2002.

[29] C. Pasareanu, R. Pelanek, and W. Visser. Concrete model
checking with abstract matching and refinement. In CAV,
2005.

[30] A. Riazanov and A. Voronkov. Vampire 1.1 (system
description). In IJCAR, pages 376–380, 2001.

[31] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. Trans. on Prog. Lang. and Syst.,
2002.

[32] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. In ESEC/SIGSOFT FSE, pages
263–272, 2005.

[33] T.Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of
the best transformer. In VMCAI, pages 252–266, 2004.

[34] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model checking programs. Autom. Softw. Eng.,
10(2):203–232, 2003.

[35] C. Weidenbach. SPASS: An automated theorem prover for
first-order logic with equality. Available at
“http://spass.mpi-sb.mpg.de/index.html”.

[36] G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing
most-precise abstract operations for shape analysis. In
TACAS, 2004.

[37] H. Zhu, P.A. Hall, and H.R. May. Software unit test coverage
and adequacy. ACM Computing Surveys, 29(4):336–427,
December 1997.

APPENDIX

A. LATTICE OPERATIONS
A lattice is a partially-ordered set closed under meet and join

operations, defined as follows. Let A be a set with partial order
�. An element a ∈ A is a lower bound of a set X ⊆ A if, for
every x ∈ X, a � x. The meet operator, denoted by �, yields the
greatest lower bound with respect to �; i.e., for every set X ⊆ A,
�X is a lower bound of X, and for every lower bound a of X,
a � �X. Similarly, an element a ∈ A is an upper bound of a set
X ⊆ A if, for every x ∈ X, x � a. Similarly, the join operator,
denoted by �, yields the least upper bound with respect to �; i.e.,
for every set X ⊆ A, �X is an upper bound of X, and for every
upper bound a of X, �X � a.

A widening operator on A is defined as a (partial) function� : A×
A → A satisfying: (i) for each x, y ∈ A, x � x�y and y � x�y;
and (ii) for all increasing chains y0 � y1 � . . . the increasing chain
defined by x0

def
= y0 and xi+1

def
= xi�yi+1 is not strictly increasing.

155

