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Abstract 1. Introduction

Bugs in multi-threaded programs often arise due to data Multi-threaded programs often exhibit wrong behaviors due
races. Numerous static and dynamic program analysis techto data races. Such concurrent errors—such as data races and
nigues have been proposed to detect data races. We proposdeadlocks—are often difficult to find because they typically
a novel randomized dynamic analysis technique that usilize happen under very specific interleavings of the executing
potential data race information obtained from an existing threads. A traditional method of testing concurrent pratga
analysis tool to separate real races from false races withou is to repeatedly execute the program with the hope that dif-
any need for manual inspection. Specifically, we use poten-ferent test executions will result in different interleags.

tial data race information obtained from an existing dymami  There are a few problems with this approach. First, the out-
analysis technique to control a random scheduler of threadscome of such testing can be highly dependent on the test en-
so that real race conditions get created with very high prob- vironment. For example, some interleavings may only occur
ability and those races get resolved randomly at runtime. on heavily-loaded test systems. Second, this kind of tgstin
Our approach has several advantages over existing dynamialepends on the underlying operating system or the virtual
analysis tools. First, we can create a real race conditidn an machine for thread scheduling—it does not try to explicitly
resolve the race randomly to see if an error can occur duecontrol the thread schedules; therefore, such testingh ofte
to the race. Second, we can replay a race revealing execuends up executing the same interleaving many times. De-
tion efficiently by simply using the same seed for random spite these limitations, such testing is an attractiveriegre
number generation—we do not need to record the execu-for finding bugs in concurrent systems for several reasgns: 1
tion. Third, our approach has very low overhead compared to testing is inexpensive compared to sophisticated teclesiqu
other precise dynamic race detection techniques because wsuch as model checking and verification, 2) testing often
only track all synchronization operations and a single phir  scales to very large programs.

memory access statements that are reported to be in a poten- Numerous program analysis techniques have been devel-
tial race by an existing analysis. We have implemented the oped to detect and predict data races in multi-threaded pro-
technique in a prototype tool for Java and have experimentedgrams. Despite recent advances, these techniques often re-
on a number of large multi-threaded Java programs. We re-port many data races that are false warnings. For example,
port a number of previously known and unknown bugs and a hybrid dynamic race detection tool [37] reports 51 data

real races in these Java programs. races foit ontat , out of which 39 are false warnings. Sim-

) ) ] ] ilarly, a static race detection tool [33] reports 19 dateesac
Categoriesand Subject Descriptors - D.2.4 [Software Engi- iy hedc, out of which 13 are false warnings. Moreover, be-
neerind: Software/Program Verification; D.2.3pftware g imprecise in nature, most of these tools require manual

Engineering: Testing and Debugging inspection to see if a race is real or not. Neverthelessethes

tools are very effective in finding data races because they
can predict data races that could potentially happen during
Keywords race detection, dynamic analysis, random test- a real execution—for such a prediction, they do not need to
ing, concurrency see an actual execution (in case of static race detection) or

they need to see one real concurrent execution (in case of

dynamic race detection.)

Imprecision in race detection can be eliminated by a

Permission to make digital or hard copies of all or part of thiork for personal or precisedynamic race detection technique' called happens-
classroom use is granted without fee provided that copreesar made or distributed bef d . it h h bl i
for profit or commercial advantage and that copies bear titiseand the full citation efore race detection [44]- However, it has three problems:
on the first page. To copy otherwise, to republish, to posteswess or to redistribute first, it can only detect a race if it really happens in an execu
to lists, requires prior specific permission and/or a fee. . . .

tion and therefore, cannot predict a potential race. Second
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to track every shared memory access at runtime. Third, since
it tracks shared memory accesses at runtime, it can perturb
an execution and can prevent the observation of a race that
can happen when memories are not tracked. Although, the
second problem can be alleviated by using off-line analy-
sis [34], there is no easy solution for the other two problems
We propose a new technique for finding bugs in con-
current programs, callethce-directed random testinpr
RACEFUzZER.) RACEFUzZER combines race detection
with a randomized thread scheduler in order to find real race
conditions in a concurrent program with high probabilitgan
to discover if the detected real races could cause an excep-
tion or an error in the program. The technique works as fol-
lows. RACEFUZzZER first uses an existing imprecise race de-
tection technique, such as hybrid dynamic race detection, t
compute a set of pairs of program statements that could po-
tentially race in a concurrent execution. For each pair & th
set, also calle@ racing pair of statementfRACEFUZZER
then executes the program with a random schedule. In the e
random schedule, at each program state, a thread is picked
randomly and its next statement is executed with the follow-
ing exception. If the next statement of the randomly picked
thread is contained in the racing pair of statements, then th
execution of the statementp®stponedintil another thread
is about to execute a statement in the racing pair and the ex-,
ecution of the statement results in a race with the execution
of the postponed statement. We say that the execution of two
statements are in race if they could be executed by different
threads temporally next to each other and both access the

same memory location and at least one of the accesses is a
write. If RACEFUZzZzER discovers such a situation where the
execution of the next statement by a thread could race with
the execution of a postponed statement, theoEUzZER
reports a real race. In this situationa®FuzZzER also ran-
domly picks one of the two statements to execute next and
continues to postpone the execution of the other statement.
Such a random resolution of real races help€ BFUZZER
to find if an exception or an error (such as an assertion viola- e
tion) can happen due to the rabesummaryRACEFUZZER
actively controls a randomized thread scheduler of concur-
rent program based on potential data races discovered by an
imprecise race detection technique.

RACEFUZzZER has several useful features. N

¢ Classifying real races from false alarms. RACE-
Fuzzer actively controls a randomized thread scheduler
so that real race conditions get created with very high
probability. (In Section 3.2, we explain our claim about
high probability through an example and empirically val-

current execution that exhibits a real race—two racing

events in the concurrent execution are brought tempo-
rally next to each other. Moreover, it allows the user to

replay the concrete execution by setting the same seed
for random number generation. An appealing feature of
this replay mechanism is that it requires no recording of
events making the replay mechanism lightweight. The re-
play feature is a useful tool fatebugging real races

Separating some harmful races from benign races.
RAaceFuzzer randomly re-orders two racing events.
This enables RceFuzzeRto find if a race could cause

a real exception in the program. As a result harmful races
that could lead to errors get detected.

No false warnings.RACEFUZZER givesno false warn-
ings about races because it actually creates a race con-
dition by bringing two racing events temporally next to
each other.

Embarrassingly parallel. Since different invocations of
RACEFUzzZER are independent of each other, perfor-
mance of RCEFUZzZER can be increased linearly with
the number of processors or cores.

Although in RACEFUZZER, a randomized thread sched-

uler is directed by potential race conditions, we can bias
the random scheduler by other potential concurrency prob-
lems suchas potential atomicity violations, atomic-set seri-
alizability violations [51], or potential deadlock§ he only
thing that the random scheduler needs to know is a set of
statements whose simultaneous execution could lead to a
concurrency problem. Such sets of problematic statements
could be provided by a static or dynamic analysis tech-
nique [23, 22, 2].

We have implemented RREFUZZER in a prototype tool

for Java. The tool has been applied to a number of large
benchmarks having a total of 600K lines of code. The results
of these experiments demonstrate two hypotheses.

RACEFUZzZER can create real race conditions with very
high probability. (We give also give intuitive reasons be-
hind this claim using an example in Section 3.24dR-
FuzzeRrcan also effectively find subtle bugs in large pro-
grams.

RACEFUZzZER detects all known real races in known
benchmarks. This shows thataABEFUzZER misses no
real races that were predicted and manually confirmed by
other dynamic analysis techniques.

To our best knowledge, &LEFUZZER is the first tech-

nigue of its kind that exploits existing race detection tech
nigues to make dynamic analysis of concurrent programs
more effective and informative for debugging. Despite the
various advantages of REFUZZER, it has some limita-
tions. First, being dynamic in nature, ABEFUZZER can-

not detect all real races in a concurrent program—it detects
a real race if the race can be produced with the given test

idate the claim in Section 5Jhis enables the user of
RAcCEFuUzzER to automatically separate real races from
false warnings, which is otherwise done through manual
inspection.

¢ Inexpensive replay of a concurrent execution exhibit-
ing a real race. RACEFUZZER provides a concrete con-



harness for some thread schedule. This can be alleviated by ¢ MEM (o, m, a, t, L) denotes that threat performed an
combining RRCEFUZZER with a symbolic execution tech- accessa € { WRITE, READ } to memory location
nigue. Second, being random in naturedRFUzzZER may m while holding the set of lockd, and executing the
not be able to separate all real races from potential races. statement.

quever, this did not .happen in our experiments with ex- 4 SND(g, ) denotes the sending of a message with unique
isting benchmarks. Third, RREEFUZZER may not be able to id ¢ by thread:.

separate all harmful races from the set of real races because
we say that a race is harmful only if it causes an exception
or an error in the program. A harmful race may not raise an

e RCV(g,t) denotes the reception of a message with
unique idg by thread.

exception, but produce wrong results, in which caseci® An important relation that is used by the hybrid race de-
Fuzzer cannot say if a race is harmful. tection algorithm is thénappens-before relatioon events

exhibited by a concurrent execution. Given an event se-
2. Algorithm quence(e;), the happens-before relatier is the smallest

In this section, we give a detailed description of thecR- relation satisfying the following conditions.

Fuzzeralgorithm. We describe RCEFUZZER using a sim- e If ¢; ande; are events from the same thread andomes
ple abstract model of concurrent systems. beforee; in the sequencé:;), thene; < e;.

e If ¢, is the sending of the messag&nde; is the recep-

2.1 Background Definitions tion of the messagg, thene; < ;.

We consider a concurrent system composed of a finite set of | _is transitivelv closed
threads. Each thread executes a sequence of statements and y '
communicates with other threads through shared objects. In2 2 The RaceEFuzzER Algorithm

a concurrent system, we assume that each thread terminatels . : . . .
. o h this section, we describe an algorithm that actively con-
after the execution of a finite number of statements. At any

o . . trols arandom thread scheduler to create real races and to de
point in the execution, a concurrent system is state Let

S be the set of states that can be exhibited by a concurrentteCt errors that could happen due to real races. The algorith

system starting from the initial statg. A concurrent sys- works in two phases. The first phase compatest of pairs

tem evolves from one state to another state when a threadof statementthat could potentially race during a concurrent

execution. The second phase uses each element from the set
executes a statement of the program. We assume that a state- . .
; . o control the random scheduling of the threads in a way so
ment in the program can access at most one shared object—,

. ? . .. _that the real racing events could be brought temporally next
this can be achieved by translating a standard program into ) ; .
. A to each other in the schedule. The first phase of the algorithm
3-address code. Next we introduce some definitions that we

. ! . uses hybrid race detection [37], an imprecise, but effectiv
will use to describe our algorithms. . . .
technique for detecting pairs of statements that couldpote
d tially race in a concurrent execution. Although we use hybri
race detection in the first phase, any other static or dynamic
race detection technigue could be used instead.

¢ Enabl ed(s) denotes the set of threads that are enable
in the states. A thread is disabled if it is waiting to
acquire a lock already held by some other thread (or

waiting on g oi n orawai t in Java.) Phase 1: Hybrid-Race Detection.

* Al ve(s) denotes the set of threads whose executions \ye next briefly summarize the hybrid-race detection algo-
have not terminated in the stateA states is indeadlock (it m [37] that we have implemented in our tool. At runtime,

if the set of enabled threads at(i.e. Enabl ed(s)) is the algorithm checks the following condition for each pdir o
empty and the set of threads that are alive filé.ve(s)) events(e;, e;).

is non-empty.

* Execut e(s, t) returns the state after executing the next | _ MEM oy, i, ai, ti, Li) A ¢; = MEM (0, m;, a;, t;, L;)
statement of the threadn the states. Ati # 5 A m;: ”’%. }\ (’ai — WFJQITE\/ aj :J\}VRjﬁ-Ejf Y

e Next St nt (s,t) denotes the next statement that the ALiNL; =0A=(ei <e;) A-(e; <ei)
threadt would execute in the state
The above condition states that two events are in race if

The following definitions are only required to briefly de- in those events two threads access the same memory loca-
scribe the hybrid race detection algorithm [37]. The execu- tion without holding a common lock, at least one of the ac-
tion of a concurrent program can be seen as a sequence ofesses is a write, and the two accesses are concurrentto each
events(e;) where an event denotes the execution of a state- other (i.e. one access does not happens-before the ofher.) |
ment by a thread. An eveatcan be of the following three  the condition holds for a pair of even(s;, ¢;), then we say
forms. (0i,05) is a racing pair of statements. The computation of



the relation< is done by maintaining a vector clock with ev-
ery thread. The events that are classified as GND and 1: Inputs: the initial statesy, a set of two racing statements
RCV(g,t) events are of the following types. If thread RaceSet
starts a threath, then events SN[, t;) and RC\(g, t2) are 2. s:=s¢
generated, whergis a unique message id. If threadcalls 3: postponed=
to.j 0i n() andt, terminates, then events SNipt,) and 4: while Enabl ed(s) # 0 do
RCV(g, t,) are generated, whegeds a unique messageid. If ~ 5 ¢ :=arandom thread iEnabl ed(s)\ postponed
ao.not i fy() on threadt; signals a.wai t () on thread, 6: if Next Stnt (s,¢) € RaceSethen
then events SN[, ¢1) and RC\(g, ,) are generated, where ' [t :=Raci ng ES’ £, postponed .
g is a unigue message id. Note that the above algorithm re- 8: it 7 0 Ehen/ A‘?t”al race detected” /
- : print “ERROR: actual race found
quires us_to track every shared_ memory access anq every, . /* Randomly resolve race */
lock acquire and release operations. Therefore, hybrié rac ;.

) o . if random booleathen
detection can have significant runtime overhead. Several op 1,. s := Execut e(s, t)

Algorithm 1 Algorithm RACEFUZZER

timizations have been proposed [37] to reduce the runtime 13: else

overhead. 14: postponed= postponedJ{t}
. /

Phase 2. RCEFUZZER. ig forsa:II:tEXeelc%u(iloe(&t,)

Our key contribution is the second phase of the algorithm, 17: postponed= postponed, {t'}

which we next describe informally. Lét;, o2) be a pair of 18: end for

statements that have been inferred to be potentially racing19: end if

in the first phase. Due to the imprecision of the first phase, 2% else/* Wait for a race to happen */

these two statements may not actually race in an actual exe-2% postponed= postponed.{}

cution. Therefore, in the second phase we try to control our elsind i

scheduler randomly based on this pair. Specifically, we exe- oa: s = Execut e(s, 1)

cute the various threads following a random schedule @i.e. a ,5.  onqif ’

each state we pick an enabled thread randomly), but when-.
ever a thread is about to execute a statemefitinos, }, we 27
postpone the execution of the thread. The postponed threacks:

if postponed= Enabl ed(s) then
remove a random element fropostponed
end if

keeps on waiting until another thread is about to execute a29: end while
statement oy, o2} and the execution of the statement ac- 30: if Acti ve(s) # 0 then
tually races with the first thread, i.e. both threads acdesst 31:  print “ERROR: actual deadlock found”
same memory location if they execute their next statements32:_end if
and one of the accesses is a write. In that scenario, we ran-Algorithm 2 FunctionRaci ng(s, ¢, postponed
domly resolve the race by allowing one thread between the 1: Inputs: program state, threadt, and sepostponed
two threads to execute the next statement and keep postpon-2: return {t' | ¢ € postponeds.t. Next St nt (s, ¢) and
ing the other thread. Note that in the above scenario, we have  Next St nt (s, t') access the same memory location and
detected a real race and we have also resolved the race ran-  at least one of the accesses is a write
domly so that we can observe if something bad can happen
due to the race. While postponing threads, it may happen that
several threads are about to execute a statemént i },
but they are not racing because they would access different The algorithm runs in a loop until there is no enabled
dynamic shared memory locations when they execute theirthread in the execution. At the termination of the loop,
next statements. In such a case, we keep postponing all theRACEFUZzZER reports an actual deadlock if there is at least
threads that are about to execute a statemefitino, }. At one active thread in the execution. In each iteration of the
any point, if we manage to postpone all the threads, then weloop, RACEFUZZER executes some statements of the pro-
pick a random thread from the set to break the deadlock. = gram as follows. RCEFUzZzER picks a random threaithat

The formal description of the RLEFUZzZER algorithm is enabled and that has not been postponed. If the next state-
is given in Algorithm 1 and Algorithm 2. The algorithm ment of the thread is not in the sRiaceSetthen RaCE-
takes as an inpugy, the initial state of the program, and FuzzeR executes the next statement. This is the trivial case.
RaceSeta set of two statements that could potentially race Otherwise, if the next statement ofs in the setRaceSet
in a concurrent execution. The algorithm maintains a set then RACEFUZZER computes a subsek® of the setpost-
postponedhat contains all the threads whose execution has poned The setRk contains all threads gfostponegdsuch that
been delayed in order to bring two racing events next to eachthe execution of the next statement of a threadiaccess
other. The next statements to be executed by these threadthe same dynamic shared memory location as the next state-
belong to the seéRaceSet ment of the thread and at least one of the accesses is a




write. The computation of the sét is done by the function Initially: x =y =2z =0;
Raci ng described in Algorithm 2.

If the setR is non-empty, then RCEFUZZER has brought
atleast two threads, i.e. the thrgaahd any thread i, such

threadl { thread2 {
X = 1; 7: z = 1;

that the execution of the next statements by the two threadssj Iyozk(l!_) ' g: : ?C'((gll;):l) (

are in race. At this point, RCEFUZZER reports a real race.  ,. | oci<( L) 10: it o(x 1= 1){
RAcEFUZZER then randomly resolves these races either by 11 ERROR2:
executing the next statement of the thream by executing 5 if (z==1) 12: }

the next statements of all the threaddinlf RACEFUzZER 6: ERROR1; 13:

chooses to execute the next statements of the threalls in  } 14: unl ock(L);

then the thread is placed in thepostponedset and the }

threads inR are removed from thpostponedset. We next

point out some key observations about fiwstponedand Figure 1. A program with a real race

R sets. The execution of the next statements of the threads

in postponeatannot mutually race because whenever a race

happens, RCEFUZZER resolves the race by executing one e€xecute first, theBRROR1 is reached. This happens duetoa
element of a racing pair. This also implies that the exeoutio race over the variable—statement 7 and statement 5 of the
of the next statements of the threadsircannot mutually ~ Program can be executed by the two threads, respectively,
race. Another observation is th& can contain more than without any synchronization between them. There is no race
one element because the next statements of the thredtls in over the variably because any accessyds protected by
can read access the same memory location. the lockL.

If the setR is empty, then there is no real race. There- ~ The accesses to the variademay appear to be in race
fore, RACEFUZZER addst to the setpostponedso that it because such accesses are not consistently protected by a
can wait for a real race to happen. At the end of each it- single lock. However, the accesses are implicitly synchro-
eration of the main loop in the &ZEFUZZER algorithm, nized by the variablg. As such, the execution of the state-
it may happen that the spbstponeds equal to the set of ~ments 1 and 10 (i.e. the statements accessjngannot be
all enabled threads. This results in a deadlock situation in brought temporally next to each other in the two threads.
the RACEFUZZER algorithm because in the next iteration Therefore, there is no race over the accesses tdybrid

RACEFUZZER has no thread for schedulingABEFUZZER race detection technique will, however, report that there i

breaks this deadlock situation by randomly removing one race over the variabte.

thread from the sgiostponed We now illustrate the RCEFUzZER algorithm using the
After the termination of the main loop inAREFUZZER, example. In the first phase of the algorithm, hybrid race de-

the set of enabled threads is empty. This implies that eithertection will report that statement paifs, 7) and(1, 10) are

all the threads have died or some threads have reached #1race. Inthe second phase, we will invoke Algorithm 1 with

deadlock situation. In the latter caseadEFuzzER reports ~ RaceSeinitialized to {5, 7} and{1, 10}. For each value of

a real deadlock. RaceSetthe algorithm will be invoked several times with
In RACEFUZZER, we can triviallyreplay a concurrent  different random seeds. Let us consider the two cases corre-

execution by picking the same seed for random number sponding to two different initializations ¢taceSet

generation. This is becausea®FuzZzER ensures that at Case 1:RaceSet {1,10}. In this case, it is not possi-

any time during execution only one thread is executing and ble for t hr ead2 to first reach statement 10. tthr ead1

it resolves all non-determinism in picking the next thremd t  first reaches statement 1, then it will delay the execution

execute by using random numbers. Deterministic replay is a Of the thread until it sees the execution of statement 10 by

powerful feature of RCEFUZzZER because it allows the user  t hr ead2. However, sincg = 0,t hr ead2 will not exe-

to replay and debug a race condition. cute statement 10 and will terminate. Following the pseudo-
code at line 26 of Algorithm 1t hr ead1 will be removed
3. Advantages of RCEFUZZER from postponednd it will execute the remaining statements.
] ] Therefore, no real race will be reported.
3.1 Example lillustrating RACEFUZZER Case 2:RaceSet {5,7}. If t hr ead1 first reaches state-

Figure 1 shows a two-threaded program with a real race. ment 5, then it starts waiting.hr ead2 then reaches state-
For the simplicity of description, instead of using Java, we ment 7 and RCEFUZZER reports a real race. Depending
use pseudo code to describe the example program. The varion whether statement 7 or statement 5 is executed next,
ablesx, y, z andthe locik. are shared between the two ERRORL is reached or not executed, respectively. The same
threads. The values af, y, andz are initialized to O. happens it hr ead?2 first reaches statement 7.

If all statements of hr ead1 execute first, theERROR1 The above example shows than&EFuzzeER can de-
is not reached. Otherwise, if all statementstdifr ead?2 tect and create a real race situation without giving anyefals



Initially: x = 0; In the first phase, hybrid race detection will predict thatest
ment 8 and statement 10 could be in race. Tae HFUZZER

threadl { - thread2 { algorithm will then be invoked wittRaceSetnitialized to

;' :‘(1)?;(( L) 1(1) Ixogk(li_) i (8,10). For any thread schedule, eitftglnr eadl will get

3 f 2() 12 £6() ' postponed at statement 8tdnr ead?2 W|Il_get postponed at

4. £3(): 13. unl ock(L); statement 1_0. Therefo_r_eAREFuz_ZER will create the race

5. f4(); } condition with probability 1. In either case AREFUZZER

6. f5(); will resolve the race and executér eadl with probabil-

7. unlock(L); ity 0.5. Therefore, the probability thatr eadl reaches the

8. if (x==0) ERROR statement is 0.5.

9. ERROR; The above example shows that in some situations even
} if two racing statements are separated by many statements

. _ in a real execution, they can be brought temporally next to
Figure 2. A program with a hard to reproduce real race  each other with high probability by RuLEFUZZER. As such
RACEFUzZER can create real race conditions with very high

. . . o , probability. Our experimental results in Section 5.2 suppo
warning. Hybrid race detection, or similar imprecise tech- this fact

nigues, can, on the other hand, give false warning e
FuzzeRr detects the only real race in the program. It also )
creates a couple of scenarios, or concurrent executioits, to 4. Implementation

lustrate the race. One such scenario shows the reachalbility RaceFuzzer can be implemented for any language that
ERRORL1. Moreover, R\CEFUZzZER prOVideS full functional- Supports threads and shared memory programming, such as
ity to replay these scenarios. Java or C/C++ with pthreads. We have implemented the
RACEFUzzER algorithm only for Java. The implementa-
tion is part of the @LFuUzzER tool set [45] developed to
experiment with various smart random testing algorithms.
We use the two-threaded program in Figure 2 to argue RACEFUZzZER instruments Java bytecode to observe various
that RACEFUZZER can create a real race condition with events and to control the thread scheduler. Bytecode instru
high probability compared to an algorithm using the default mentation allows us to analyze any Java program for which
scheduler or a simple random scheduler. the source code is not available. The instrumentationtsiser
The program uses a shared variablhich is initialized various methods provided byAR EFuzzER inside Java pro-
to 0. The important statements in this program are statesnent grams. These methods implement both hybrid-race detection
8, 9, and 10. We add the other statements in the program toand the RCEFuzzER algorithm.
ensure that statement 8 gets executed after the executton of  The implementation of the hybrid-race detection algo-
large number of statements bjr eadl and statement 10  rithm is not an optimized one. This is because the goal of
gets executed by hr ead2 at the beginning. This snippet this work is to implement and experiment with the¢t-
represents a pattern in real-world programs. Fuzzer algorithm. As such the implementation of the
If we run the program with the default scheduler or use hybrid-race detection algorithm runs slower than the opti-
a simple randomized scheduler, then the probability of ex- mized implementation reported in [37].
ecuting statements 8 and 10 temporally next to each other The instrumentor of RCEFUzZER modifies all bytecode
is very low. In fact, with high probability, the execution of associated with a Java program including the librariesasus
statements 8 and 10 will be separated by the acquire and theexcept for the classes that are used to implemexteR
release of the lock. As such a happens-before race detec- FuzzeR. This is because RLEFUZZER runs in the same
tor will not be able to detect the race with high probabil- memory space as the program under analysi€HFUZZER
ity. Moreover, in this example, it is very unlikely that stat ~ cannot track lock acquires and releases by native code. As
ment 10 will be executed after statement 8. This implies that such, there is a possibility thatAREFUZZER can go into a
ERROR will not be executed with very high probability. The deadlock if there are synchronization operations inside-un
probability of detecting the race and reaching HERROR strumented classes or native code. To avoid such scenarios,
statement depends on the number of statements before stateRACEFUZZER runs a monitor thread that periodically polls
ment 8. The probability becomes lower as the number of to check if there is any deadlock. If the monitor discovers a
statements before statement 8 is increased. deadlock, then it removes one thread from thepsstponed
We now show that RCEFUZZER creates the real race RACEFUZZER can also go into livelocks. Livelocks hap-
with probability 1 and reaches tHeRROR statement with pen when all threads of the program end up ingbstponed
probability 0.5. Moreover, we show that this probability is set, except for one thread that does something in a loop with-
independent of the number of statements before statement 8out synchronizing with other threads. We observed such live

3.2 Example 2 illustrating that RACEFUZZER can
detect races with high probability



locks in a couple of our benchmarks includimgl dyn. In argument an object of the same type. For such methods, we
the presence of livelocks, these benchmarks work correctly call the method on one object and pass the other object as an
because the correctness of these benchmarks assumes thatgument.
the underlying Java thread scheduler is fair. In order tadavo We use our experiments two demonstrate the following
livelocks, RACEFUZZER creates a monitor thread that peri- two hypotheses
odically removes those threads from {h@stponedset that
are waiting for a long time.

In [31], it has been shown that it is sufficient to perform
thread switches before synchronization operations, deali

1. RAcEFUZzZER can create real race conditions with very
high probability. It can also show if a real race can lead
to an exception.

that the algorithm tracks all data racesd&FUZZER, there- 2. The real races detected automatically bycRFUzZER
fore, only performs thread switches before synchronizatio ~ are same as the real races that are predicted and manually
operations. This particular restriction on thread switebis confirmed for a number of existing benchmark programs.

our implementation fast. SinceAREFUZZER only tracks
. . . . 5.2 Results

synchronization operations and a racing statement pair, th

runtime overhead of RCEFUZZER is significantly lower Table 1 summarizes the results of our experiments. Column

than that of hybrid-race detection and happens-before race2 reports the number of lines of code. The reported num-

detection techniques. ber of lines of code is always fewer than the actual number
of lines of code. This is because we do not count lines in
5. Empirical Evaluation several libraries. Columns 3, 4, and 5 report the average run

time for the benchmark programs using normal execution,
the hybrid-race detection algorithm, and&EFUZZER, re-
We evaluated RCeEFuzzeR on a variety of Java multi-  spectively. For the I/O intensive benchmarks, the runtime
threaded programs. The benchmark includes both closedof RACEFUzZER is 1.1x-3x greater than normal execution
programs and open libraries that require test drivers teeclo  time. However, the runtime is significantly greater for the
them. We ran our experiments on a Macbook Pro with a high-performance computing applications. The runtime of
2.2 GHz Intel Core 2 Duo processor and 2GB RAM. We the hybrid-race detection algorithm has many orders of mag-
considered the following closed benchmark programs in nitude higher runtime for the high-performance benchmarks
our experimentsnol dyn, nont ecar |l o, raytracer, The runtime for RceFuzzEeR is not that high because we
three benchmarks from the Java Grande Fomat,he4; , only instrument the racing statements and synchronization
a fast thread-safe implementation of a cache for Java ob-operations in RCEFUzZER. Since RA\CEFUZzZER is a tool
jects, sor, successive order-relaxation benchmark from for testing and debugging, we do not worry about runtime as
ETH [53], hedc, a web-crawler application kernel devel- long as the average runtime is less than a few seconds. Due
oped at ETH [53],webl ech, a multi-threaded web site  to the interactive nature of thei gsaw webserver, we do
download and mirror tool, spi der, a highly configurable  not report the runtime fgri gsaw.
and customizable Web Spider engind,gsaw 2. 2. 6, Columns 6, 7, and 8 report the number of potential races
W3C's leading-edge Web server platform. The total lines detected by the hybrid algorithm, the number of real races
of code in these benchmark programs is approximately reported by RCeEFuUzzER, and the number of real races
600,000. The bugs and real races discovered in the benchknown from case studies done by other researchers, respec-
mark programs whose column 8 has an empty entry, weretively. In each case, we count the number of distinct pairs
previously unknown. of statements for which there is a race. The fact that the
The open programs consist of several synchronized numbers in column 7 are equal to the numbers in column
Collection classes provided with Sun’'s JDK, such as 8 demonstrates our hypothesis 2, i.eAdRFUZZER reports
Vector in JDK 1.1, Arraylist, LinkedList, all real races that were reported by existing dynamic anal-
HashSet, and TreeSet in JDK 1.4.2. Most of these ysis tools. In case ofiol dyn, we discovered 2 real races
classes (except thé/ector class) are not synchro- (butbenign) that were missed by previous dynamic analysis
nized by default. Thg ava. uti | package provides spe- tools.
cial functionsCol | ecti ons. synchroni zedLi st and Column 9 reports the total number of distinct pairs of
Col I ecti ons. synchroni zedSet to make the above racing statements for which an exception has been thrown
classes synchronized. In order to close the Collection by a benchmark program. Column 10 reports the number
classes, we wrote a multi-threaded test driver for each suchof exceptions thrown by a benchmark when run with the
class. A test driver starts by creating two empty objecteeft  JVM’s default scheduler. We describe details of some of the
class. The test driver also creates and starts a set of #iread exceptions detected byAREFUZZER in the next section.
where each thread executes different methods of eitheeofth The results in these two columns show thatdRFuUzzERis
two objects concurrently. We created two objects becausefar more effective in discovering insidious errors in concu
some of the methods, such @snt ai nsAl | , takes as an  rent programs compared to the default scheduler. Column 11

5.1 Benchmark Programs



Program SLOC | Average Runtime in sec. # of Races # of Exceptions| Probability of
Name Normal | Hybrid RF | Hybrid | RF (real) | known | RF Simple | hitting a race
moldyn 1,352 2.07 | > 3600 | 42.37 59 2 0 0 0 1.00
raytracer 1,924 3.25 | > 3600 3.81 2 2 2 0 0 1.00
montecarlo 3,619 3.48 | > 3600 6.44 5 1 1 0 0 1.00
cache4j 3,897 2.19 426 | 2.61 18 2 - 1 0 1.00
sor 17,689 0.16 0.35| 0.23 8 0 0 0 0 -

hedc 29,948 1.10 1.35 1.11 9 1 1 1 0 0.86
weblech 35,175 0.91 192 | 1.36 27 2 1 1 1 0.83
jspider 64,933 4.79 488 | 4.81 29 0 - 0 0 -

jigsaw 381,348 - - 0.81 547 36 0 0 0.90
vector 1.1 709 0.11 0.25 0.2 9 9 9 0 0 0.94
LinkedList 5979 0.16 0.26 | 0.22 12 12 - 5 0 0.85
ArrayList 5866 0.16 0.26 | 0.24 14 7 - 7 0 0.55
HashSet 7086 0.16 0.26 | 0.25 11 11 - 8 1 0.54
TreeSet 7532 0.17 0.26 | 0.24 13 8 - 8 1 0.41

Table 1. Experimental results.

shows thatin most cases\REFUZZER can create arealrace and NoSuchEl ement Excepti on. This is because
with very high probability. In order to roughly estimate the the contai nsAll method is implemented by the
probability, we ran RCEFuUzzER 100 times for each rac- superclass Abstract Col | ecti on and the imple-
ing pair of statements. The above results demonstrate oumentation uses iterator in a thread-unsafe way: a call

hypothesis 1. to 11.containsAll(l2) calls the synchronized
i t er at or method onl 2 and then goes over the iterator
5.3 Bugs Found without holding the lock orl 2. As a result, the iterator

accesses thendCount field of | 2 without holding the
lock onl| 2. Therefore, any other method call o2 that
modifiesnodCount , such ag enoveAl | , would interfere
with the iterator code leading to exceptions. The code works
without exception in a single-threaded setting and probabl
the developers had a single-threaded setting in mind while
implementing the unsynchronizednt ai nsAl I method

Thr ead2: in Abstract Col | ecti on. However, while extending
_sleep = true; the Li nkedLi st class to synchronizedi nkedLi st
synchroni zed(thi s) { try {

RACEFuUzzER discovered a number of previously unknown
uncaught exceptions in the benchmark programs. We next
describe a couple of them.AREFUzZER discovered an
uncaught exception inachedj that happens due to a race
over the _sl eep field in Cached eaner. java. The
code snippet causing the exception is shown below.

Thr eadl:

sl eep(_cl eanl nterval): using a decorator pattern in ti@l | ect i ons class, the
if(_;slmegfnzl{J (0 } catch (Throwable t){ developers did not override tteont ai nsAl | method to
) pred: }finally { make it thread-safe.

} _sleep = fal se;
}

If _sl eep is set tot r ue by Thr ead2 before entering the 6. Related Work

try block andThr ead1 is executed next, then an uncaught A large body of research focuses on dynamic or static

I nt errupt edExcept i on is thrown causingrhr ead?2 race detection [41, 35, 21, 43, 10, 14]. Type based tech-

to crash. Note that hettehi s correspondstdhr ead?2. nigques [20, 5, 6], which require programmer annotations,
We discovered some concurrency related problems in thehave been used to reduce the race detection problemto a type
JDK 1.4.2 classelsi nkedLi st ,ArrayLi st,HashSet, checking problem. Since annotation writing creates signifi
andTr eeSet . Specifically, we discovered real races in the cant overhead, techniques [3] have been proposed to infer
cont ai nsAl | andequal s methods ofLi nkedLi st type annotations by looking at concurrent executions. Othe
and Arraylist, and in the containsAll and language based techniques for static race detection iaclud
addAl I methods of HashSet and TreeSet. For nesC [24] and Guava [5]. Several static race detection tech-

example, if we call | 1.containsAll(l2) and niques [49, 19, 39] based on lockset [43] have been pro-
| 2. renoveAl | () in two threads, wherel 1 and posed. An important advantage of the static techniques is
| 2 are synchronizedLi nkedLi sts (created using that they could find all potential race conditions in a pro-
Col | ecti ons. synchroni zedLi st), then we can gram. A primary limitation of these techniques is that they
get both Concurrent Modifi cati onException report a lot of false races. More recent efforts on statie rac



detection [33, 32] have significantly reduced the number of  Static verification [4, 16, 28, 40, 8] and model check-
false warnings with minimal annotations, but the problem ing [17, 29, 25, 27, 52, 31] or path-sensitive search of the
of false positives still remains. Moreover, these techegju  state space is an alternative approach to finding bugs in con-
could not infer if a race could lead to an exception in the current programs. Model checkers being exhaustive in na-
program. Therefore, manual inspection is needed to separat ture can often find all concurrency related bugs in concur-
real races and harmful races. Manual inspection often over-rent programs. Unfortunately, model checking does noescal
whelms the developersAREFUzzER tries to reduce the ef-  with program size. Several other systematic and exhaustive
fort of manual inspection by exploiting the potential raeer  techniques [7, 9, 48, 46] for testing concurrent and pdralle
ports generated by any imprecise race detection technique t programs have been developed recently. These techniques
guide a random thread scheduler. exhaustively explore all interleavings of a concurrent-pro
Dynamic race detection techniques are often based ongram by systematically switching threads at synchroriznati
lockset [43, 53, 10, 36, 2] or on happens-before [44, 14, points. More recently, efforts [47] have been made to com-
1, 11, 30, 42, 13, 34]. Lockset based dynamic techniquesbine model checking with lockset based algorithms to prove
could predict data races that did not happen in a concur-the existence of real races; however, this technique suffer
rent execution; however, such techniques can report manyfrom scalability problem as in model checking.
false warnings. Happens-before based dynamic techniques Randomized algorithms for model checking have also
are capable of detecting races that actually happen in an exebeen proposed. For example Monte Carlo Model Check-
cution. Therefore, these techniques are precise, but irey ¢ ing [26] uses random walk on the state space to give proba-
not give good coverage as lockset based algorithms. Specifi-bilistic guarantee of the validity of properties expresged
cally, happens-before race detectors cannot predict thaes  linear temporal logic. Randomized depth-first search [15]
could happen on a different schedule or they cannot createand its parallel extensions have been developed to dramat-
a schedule that could reveal a real race. Recently happensically improve the cost-effectiveness of state-spaceckear
before race detection has been successfully extendedsto cla techniques using parallelism.
sify harmful races from benign races [34], but they suf- Capture and replay techniques have been combined with
fer from the same limitations as happens-before techniques delta-debugging [12] to pinpoint a program location where
Hybrid techniques [14, 37, 38, 54] combine lockset with a thread switch could result in a program failure. The key
happens-before to make dynamic race detection both precisealifference between this technique andd&FuzzeRr is that
and predictive. Despite the combination, hybrid techngque the former technique narrows down the difference between
could report many false warnings. One characteristics thata successful schedule and a failure inducing schedule to pin
distinguishes RCceFuUzzER from other dynamic techniques point a bug. RCceFuzzer randomly controls thread sched-
is that RACEFUZZER activelycontrols the thread scheduler, ules based on potential race conditions to determine ife rac
whereas the other techniguesssivelyobserve an execution.  is real.
Recently, a couple of random testing techniques [18, 50]
for concurrent programs have been proposed. These tech-
niques randomly seed a Java program under test with theACKknowledgment
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