
Race Directed Random Testing of Concurrent Programs

Koushik Sen

EECS Department, UC Berkeley, CA, USA.

ksen@cs.berkeley.edu

Abstract
Bugs in multi-threaded programs often arise due to data
races. Numerous static and dynamic program analysis tech-
niques have been proposed to detect data races. We propose
a novel randomized dynamic analysis technique that utilizes
potential data race information obtained from an existing
analysis tool to separate real races from false races without
any need for manual inspection. Specifically, we use poten-
tial data race information obtained from an existing dynamic
analysis technique to control a random scheduler of threads
so that real race conditions get created with very high prob-
ability and those races get resolved randomly at runtime.
Our approach has several advantages over existing dynamic
analysis tools. First, we can create a real race condition and
resolve the race randomly to see if an error can occur due
to the race. Second, we can replay a race revealing execu-
tion efficiently by simply using the same seed for random
number generation—we do not need to record the execu-
tion. Third, our approach has very low overhead compared to
other precise dynamic race detection techniques because we
only track all synchronization operations and a single pairof
memory access statements that are reported to be in a poten-
tial race by an existing analysis. We have implemented the
technique in a prototype tool for Java and have experimented
on a number of large multi-threaded Java programs. We re-
port a number of previously known and unknown bugs and
real races in these Java programs.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.2.5 [Software
Engineering]: Testing and Debugging

General Terms Languages, Algorithms, Verification

Keywords race detection, dynamic analysis, random test-
ing, concurrency
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1. Introduction
Multi-threaded programs often exhibit wrong behaviors due
to data races. Such concurrent errors–such as data races and
deadlocks–are often difficult to find because they typically
happen under very specific interleavings of the executing
threads. A traditional method of testing concurrent programs
is to repeatedly execute the program with the hope that dif-
ferent test executions will result in different interleavings.
There are a few problems with this approach. First, the out-
come of such testing can be highly dependent on the test en-
vironment. For example, some interleavings may only occur
on heavily-loaded test systems. Second, this kind of testing
depends on the underlying operating system or the virtual
machine for thread scheduling—it does not try to explicitly
control the thread schedules; therefore, such testing often
ends up executing the same interleaving many times. De-
spite these limitations, such testing is an attractive technique
for finding bugs in concurrent systems for several reasons: 1)
testing is inexpensive compared to sophisticated techniques
such as model checking and verification, 2) testing often
scales to very large programs.

Numerous program analysis techniques have been devel-
oped to detect and predict data races in multi-threaded pro-
grams. Despite recent advances, these techniques often re-
port many data races that are false warnings. For example,
a hybrid dynamic race detection tool [37] reports 51 data
races fortomcat, out of which 39 are false warnings. Sim-
ilarly, a static race detection tool [33] reports 19 data races
in hedc, out of which 13 are false warnings. Moreover, be-
ing imprecise in nature, most of these tools require manual
inspection to see if a race is real or not. Nevertheless, these
tools are very effective in finding data races because they
can predict data races that could potentially happen during
a real execution—for such a prediction, they do not need to
see an actual execution (in case of static race detection) or
they need to see one real concurrent execution (in case of
dynamic race detection.)

Imprecision in race detection can be eliminated by a
precisedynamic race detection technique, called happens-
before race detection [44]. However, it has three problems:
first, it can only detect a race if it really happens in an execu-
tion and therefore, cannot predict a potential race. Second,
this technique has a very large runtime overhead as it needs



to track every shared memory access at runtime. Third, since
it tracks shared memory accesses at runtime, it can perturb
an execution and can prevent the observation of a race that
can happen when memories are not tracked. Although, the
second problem can be alleviated by using off-line analy-
sis [34], there is no easy solution for the other two problems.

We propose a new technique for finding bugs in con-
current programs, calledrace-directed random testing(or
RACEFUZZER.) RACEFUZZER combines race detection
with a randomized thread scheduler in order to find real race
conditions in a concurrent program with high probability and
to discover if the detected real races could cause an excep-
tion or an error in the program. The technique works as fol-
lows. RACEFUZZER first uses an existing imprecise race de-
tection technique, such as hybrid dynamic race detection, to
compute a set of pairs of program statements that could po-
tentially race in a concurrent execution. For each pair in the
set, also calleda racing pair of statements, RACEFUZZER

then executes the program with a random schedule. In the
random schedule, at each program state, a thread is picked
randomly and its next statement is executed with the follow-
ing exception. If the next statement of the randomly picked
thread is contained in the racing pair of statements, then the
execution of the statement ispostponeduntil another thread
is about to execute a statement in the racing pair and the ex-
ecution of the statement results in a race with the execution
of the postponed statement. We say that the execution of two
statements are in race if they could be executed by different
threads temporally next to each other and both access the
same memory location and at least one of the accesses is a
write. If RACEFUZZER discovers such a situation where the
execution of the next statement by a thread could race with
the execution of a postponed statement, then RACEFUZZER

reports a real race. In this situation, RACEFUZZER also ran-
domly picks one of the two statements to execute next and
continues to postpone the execution of the other statement.
Such a random resolution of real races helps RACEFUZZER

to find if an exception or an error (such as an assertion viola-
tion) can happen due to the race.In summary,RACEFUZZER

actively controls a randomized thread scheduler of concur-
rent program based on potential data races discovered by an
imprecise race detection technique.

RACEFUZZER has several useful features.

• Classifying real races from false alarms. RACE-
FUZZER actively controls a randomized thread scheduler
so that real race conditions get created with very high
probability. (In Section 3.2, we explain our claim about
high probability through an example and empirically val-
idate the claim in Section 5.)This enables the user of
RACEFUZZER to automatically separate real races from
false warnings, which is otherwise done through manual
inspection.

• Inexpensive replay of a concurrent execution exhibit-
ing a real race.RACEFUZZER provides a concrete con-

current execution that exhibits a real race—two racing
events in the concurrent execution are brought tempo-
rally next to each other. Moreover, it allows the user to
replay the concrete execution by setting the same seed
for random number generation. An appealing feature of
this replay mechanism is that it requires no recording of
events making the replay mechanism lightweight. The re-
play feature is a useful tool fordebugging real races.

• Separating some harmful races from benign races.
RACEFUZZER randomly re-orders two racing events.
This enables RACEFUZZER to find if a race could cause
a real exception in the program. As a result harmful races
that could lead to errors get detected.

• No false warnings.RACEFUZZER givesno false warn-
ings about races because it actually creates a race con-
dition by bringing two racing events temporally next to
each other.

• Embarrassingly parallel. Since different invocations of
RACEFUZZER are independent of each other, perfor-
mance of RACEFUZZER can be increased linearly with
the number of processors or cores.

Although in RACEFUZZER, a randomized thread sched-
uler is directed by potential race conditions, we can bias
the random scheduler by other potential concurrency prob-
lems suchas potential atomicity violations, atomic-set seri-
alizability violations [51], or potential deadlocks. The only
thing that the random scheduler needs to know is a set of
statements whose simultaneous execution could lead to a
concurrency problem. Such sets of problematic statements
could be provided by a static or dynamic analysis tech-
nique [23, 22, 2].

We have implemented RACEFUZZER in a prototype tool
for Java. The tool has been applied to a number of large
benchmarks having a total of 600K lines of code. The results
of these experiments demonstrate two hypotheses.

• RACEFUZZER can create real race conditions with very
high probability. (We give also give intuitive reasons be-
hind this claim using an example in Section 3.2.) RACE-
FUZZERcan also effectively find subtle bugs in large pro-
grams.

• RACEFUZZER detects all known real races in known
benchmarks. This shows that RACEFUZZER misses no
real races that were predicted and manually confirmed by
other dynamic analysis techniques.

To our best knowledge, RACEFUZZER is the first tech-
nique of its kind that exploits existing race detection tech-
niques to make dynamic analysis of concurrent programs
more effective and informative for debugging. Despite the
various advantages of RACEFUZZER, it has some limita-
tions. First, being dynamic in nature, RACEFUZZER can-
not detect all real races in a concurrent program—it detects
a real race if the race can be produced with the given test



harness for some thread schedule. This can be alleviated by
combining RACEFUZZER with a symbolic execution tech-
nique. Second, being random in nature, RACEFUZZER may
not be able to separate all real races from potential races.
However, this did not happen in our experiments with ex-
isting benchmarks. Third, RACEFUZZER may not be able to
separate all harmful races from the set of real races because
we say that a race is harmful only if it causes an exception
or an error in the program. A harmful race may not raise an
exception, but produce wrong results, in which case, RACE-
FUZZER cannot say if a race is harmful.

2. Algorithm
In this section, we give a detailed description of the RACE-
FUZZER algorithm. We describe RACEFUZZER using a sim-
ple abstract model of concurrent systems.

2.1 Background Definitions

We consider a concurrent system composed of a finite set of
threads. Each thread executes a sequence of statements and
communicates with other threads through shared objects. In
a concurrent system, we assume that each thread terminates
after the execution of a finite number of statements. At any
point in the execution, a concurrent system is in astate. Let
S be the set of states that can be exhibited by a concurrent
system starting from the initial states0. A concurrent sys-
tem evolves from one state to another state when a thread
executes a statement of the program. We assume that a state-
ment in the program can access at most one shared object—
this can be achieved by translating a standard program into
3-address code. Next we introduce some definitions that we
will use to describe our algorithms.

• Enabled(s) denotes the set of threads that are enabled
in the states. A thread is disabled if it is waiting to
acquire a lock already held by some other thread (or
waiting on ajoin or await in Java.)

• Alive(s) denotes the set of threads whose executions
have not terminated in the states. A states is in deadlock
if the set of enabled threads ats (i.e. Enabled(s)) is
empty and the set of threads that are alive (i.e.Alive(s))
is non-empty.

• Execute(s, t) returns the state after executing the next
statement of the threadt in the states.

• NextStmt(s, t) denotes the next statement that the
threadt would execute in the states.

The following definitions are only required to briefly de-
scribe the hybrid race detection algorithm [37]. The execu-
tion of a concurrent program can be seen as a sequence of
events〈ei〉 where an event denotes the execution of a state-
ment by a thread. An evente can be of the following three
forms.

• MEM(σ, m, a, t, L) denotes that threadt performed an
accessa ∈ { WRITE, READ } to memory location
m while holding the set of locksL and executing the
statementσ.

• SND(g, t) denotes the sending of a message with unique
id g by threadt.

• RCV(g, t) denotes the reception of a message with
unique idg by threadt.

An important relation that is used by the hybrid race de-
tection algorithm is thehappens-before relationon events
exhibited by a concurrent execution. Given an event se-
quence〈ei〉, the happens-before relation≺ is the smallest
relation satisfying the following conditions.

• If ei andej are events from the same thread andei comes
beforeej in the sequence〈ei〉, thenei ≺ ej.

• If ei is the sending of the messageg andej is the recep-
tion of the messageg, thenei ≺ ej.

• ≺ is transitively closed.

2.2 The RACEFUZZER Algorithm

In this section, we describe an algorithm that actively con-
trols a random thread scheduler to create real races and to de-
tect errors that could happen due to real races. The algorithm
works in two phases. The first phase computesa set of pairs
of statementsthat could potentially race during a concurrent
execution. The second phase uses each element from the set
to control the random scheduling of the threads in a way so
that the real racing events could be brought temporally next
to each other in the schedule. The first phase of the algorithm
uses hybrid race detection [37], an imprecise, but effective,
technique for detecting pairs of statements that could poten-
tially race in a concurrent execution. Although we use hybrid
race detection in the first phase, any other static or dynamic
race detection technique could be used instead.

Phase 1: Hybrid-Race Detection.

We next briefly summarize the hybrid-race detection algo-
rithm [37] that we have implemented in our tool. At runtime,
the algorithm checks the following condition for each pair of
events(ei, ej).

ei = MEM(σi, mi, ai, ti, Li) ∧ ej = MEM(σj , mj , aj , tj , Lj)
∧ti 6= tj ∧ mi = mj ∧ (ai = WRITE∨ aj = WRITE)
∧Li ∩ Lj = ∅ ∧ ¬(ei ≺ ej) ∧ ¬(ej ≺ ei)

The above condition states that two events are in race if
in those events two threads access the same memory loca-
tion without holding a common lock, at least one of the ac-
cesses is a write, and the two accesses are concurrent to each
other (i.e. one access does not happens-before the other.) If
the condition holds for a pair of events(ei, ej), then we say
(σi, σj) is a racing pair of statements. The computation of



the relation≺ is done by maintaining a vector clock with ev-
ery thread. The events that are classified as SND(g, t) and
RCV(g, t) events are of the following types. If threadt1
starts a threadt2, then events SND(g, t1) and RCV(g, t2) are
generated, whereg is a unique message id. If threadt1 calls
t2.join() and t2 terminates, then events SND(g, t2) and
RCV(g, t1) are generated, whereg is a unique message id. If
a o.notify() on threadt1 signals ao.wait() on threadt2,
then events SND(g, t1) and RCV(g, t2) are generated, where
g is a unique message id. Note that the above algorithm re-
quires us to track every shared memory access and every
lock acquire and release operations. Therefore, hybrid race
detection can have significant runtime overhead. Several op-
timizations have been proposed [37] to reduce the runtime
overhead.

Phase 2. RACEFUZZER .

Our key contribution is the second phase of the algorithm,
which we next describe informally. Let(σ1, σ2) be a pair of
statements that have been inferred to be potentially racing
in the first phase. Due to the imprecision of the first phase,
these two statements may not actually race in an actual exe-
cution. Therefore, in the second phase we try to control our
scheduler randomly based on this pair. Specifically, we exe-
cute the various threads following a random schedule (i.e. at
each state we pick an enabled thread randomly), but when-
ever a thread is about to execute a statement in{σ1, σ2}, we
postpone the execution of the thread. The postponed thread
keeps on waiting until another thread is about to execute a
statement in{σ1, σ2} and the execution of the statement ac-
tually races with the first thread, i.e. both threads access the
same memory location if they execute their next statements
and one of the accesses is a write. In that scenario, we ran-
domly resolve the race by allowing one thread between the
two threads to execute the next statement and keep postpon-
ing the other thread. Note that in the above scenario, we have
detected a real race and we have also resolved the race ran-
domly so that we can observe if something bad can happen
due to the race. While postponing threads, it may happen that
several threads are about to execute a statement in{σ1, σ2},
but they are not racing because they would access different
dynamic shared memory locations when they execute their
next statements. In such a case, we keep postponing all the
threads that are about to execute a statement in{σ1, σ2}. At
any point, if we manage to postpone all the threads, then we
pick a random thread from the set to break the deadlock.

The formal description of the RACEFUZZER algorithm
is given in Algorithm 1 and Algorithm 2. The algorithm
takes as an inputs0, the initial state of the program, and
RaceSet, a set of two statements that could potentially race
in a concurrent execution. The algorithm maintains a set
postponedthat contains all the threads whose execution has
been delayed in order to bring two racing events next to each
other. The next statements to be executed by these threads
belong to the setRaceSet.

Algorithm 1 Algorithm RACEFUZZER

1: Inputs: the initial states0, a set of two racing statements
RaceSet

2: s := s0

3: postponed:= ∅
4: while Enabled(s) 6= ∅ do
5: t := a random thread inEnabled(s)\ postponed
6: if NextStmt(s, t) ∈ RaceSetthen
7: R := Racing (s, t, postponed)
8: if R 6= ∅ then /* Actual race detected */
9: print “ERROR: actual race found”

10: /* Randomly resolve race */
11: if random booleanthen
12: s := Execute(s, t)
13: else
14: postponed:= postponed∪{t}
15: for all t′ ∈ R do
16: s := Execute(s, t′)
17: postponed:= postponed\{t′}
18: end for
19: end if
20: else/* Wait for a race to happen */
21: postponed:= postponed∪{t}
22: end if
23: else
24: s := Execute(s, t)
25: end if
26: if postponed= Enabled(s) then
27: remove a random element frompostponed
28: end if
29: end while
30: if Active(s) 6= ∅ then
31: print “ERROR: actual deadlock found”
32: end if

Algorithm 2 FunctionRacing(s, t, postponed)
1: Inputs: program states, threadt, and setpostponed
2: return {t′ | t′ ∈ postponeds.t.NextStmt(s, t) and
NextStmt(s, t′) access the same memory location and
at least one of the accesses is a write}

The algorithm runs in a loop until there is no enabled
thread in the execution. At the termination of the loop,
RACEFUZZER reports an actual deadlock if there is at least
one active thread in the execution. In each iteration of the
loop, RACEFUZZER executes some statements of the pro-
gram as follows. RACEFUZZER picks a random threadt that
is enabled and that has not been postponed. If the next state-
ment of the thread is not in the setRaceSet, then RACE-
FUZZER executes the next statement. This is the trivial case.
Otherwise, if the next statement oft is in the setRaceSet,
then RACEFUZZER computes a subsetR of the setpost-
poned. The setR contains all threads ofpostponed, such that
the execution of the next statement of a thread inR access
the same dynamic shared memory location as the next state-
ment of the threadt and at least one of the accesses is a



write. The computation of the setR is done by the function
Racing described in Algorithm 2.

If the setR is non-empty, then RACEFUZZER has brought
at least two threads, i.e. the threadt and any thread inR, such
that the execution of the next statements by the two threads
are in race. At this point, RACEFUZZER reports a real race.
RACEFUZZER then randomly resolves these races either by
executing the next statement of the threadt or by executing
the next statements of all the threads inR. If RACEFUZZER

chooses to execute the next statements of the threads inR,
then the threadt is placed in thepostponedset and the
threads inR are removed from thepostponedset. We next
point out some key observations about thepostponedand
R sets. The execution of the next statements of the threads
in postponedcannot mutually race because whenever a race
happens, RACEFUZZER resolves the race by executing one
element of a racing pair. This also implies that the execution
of the next statements of the threads inR cannot mutually
race. Another observation is thatR can contain more than
one element because the next statements of the threads inR

can read access the same memory location.
If the setR is empty, then there is no real race. There-

fore, RACEFUZZER addst to the setpostponedso that it
can wait for a real race to happen. At the end of each it-
eration of the main loop in the RACEFUZZER algorithm,
it may happen that the setpostponedis equal to the set of
all enabled threads. This results in a deadlock situation in
the RACEFUZZER algorithm because in the next iteration
RACEFUZZER has no thread for scheduling. RACEFUZZER

breaks this deadlock situation by randomly removing one
thread from the setpostponed.

After the termination of the main loop in RACEFUZZER,
the set of enabled threads is empty. This implies that either
all the threads have died or some threads have reached a
deadlock situation. In the latter case, RACEFUZZER reports
a real deadlock.

In RACEFUZZER, we can trivially replay a concurrent
execution by picking the same seed for random number
generation. This is because RACEFUZZER ensures that at
any time during execution only one thread is executing and
it resolves all non-determinism in picking the next thread to
execute by using random numbers. Deterministic replay is a
powerful feature of RACEFUZZER because it allows the user
to replay and debug a race condition.

3. Advantages of RACEFUZZER

3.1 Example 1 illustrating RACEFUZZER

Figure 1 shows a two-threaded program with a real race.
For the simplicity of description, instead of using Java, we
use pseudo code to describe the example program. The vari-
ablesx, y, z and the lockL are shared between the two
threads. The values ofx, y, andz are initialized to 0.

If all statements ofthread1 execute first, thenERROR1
is not reached. Otherwise, if all statements ofthread2

Initially: x = y = z = 0;

thread1 { thread2 {
1: x = 1; 7: z = 1;
2: lock(L); 8: lock(L);
3: y = 1; 9: if (y==1) {
4: unlock(L); 10: if (x != 1){

11: ERROR2;
5: if (z==1) 12: }
6: ERROR1; 13: }
} 14: unlock(L);

}

Figure 1. A program with a real race

execute first, thenERROR1 is reached. This happens due to a
race over the variablez—statement 7 and statement 5 of the
program can be executed by the two threads, respectively,
without any synchronization between them. There is no race
over the variabley because any access toy is protected by
the lockL.

The accesses to the variablex may appear to be in race
because such accesses are not consistently protected by a
single lock. However, the accesses are implicitly synchro-
nized by the variabley. As such, the execution of the state-
ments 1 and 10 (i.e. the statements accessingx) cannot be
brought temporally next to each other in the two threads.
Therefore, there is no race over the accesses tox. Hybrid
race detection technique will, however, report that there is a
race over the variablex.

We now illustrate the RACEFUZZER algorithm using the
example. In the first phase of the algorithm, hybrid race de-
tection will report that statement pairs(5, 7) and(1, 10) are
in race. In the second phase, we will invoke Algorithm 1 with
RaceSetinitialized to{5, 7} and{1, 10}. For each value of
RaceSet, the algorithm will be invoked several times with
different random seeds. Let us consider the two cases corre-
sponding to two different initializations ofRaceSet.
Case 1: RaceSet= {1, 10}. In this case, it is not possi-
ble for thread2 to first reach statement 10. Ifthread1
first reaches statement 1, then it will delay the execution
of the thread until it sees the execution of statement 10 by
thread2. However, sincey = 0, thread2 will not exe-
cute statement 10 and will terminate. Following the pseudo-
code at line 26 of Algorithm 1,thread1 will be removed
frompostponedand it will execute the remaining statements.
Therefore, no real race will be reported.
Case 2:RaceSet= {5, 7}. If thread1 first reaches state-
ment 5, then it starts waiting.thread2 then reaches state-
ment 7 and RACEFUZZER reports a real race. Depending
on whether statement 7 or statement 5 is executed next,
ERROR1 is reached or not executed, respectively. The same
happens ifthread2 first reaches statement 7.

The above example shows that RACEFUZZER can de-
tect and create a real race situation without giving any false



Initially: x = 0;

thread1 { thread2 {
1. lock(L); 10. x = 1;
2. f1(); 11. lock(L);
3. f2(); 12. f6();
4. f3(); 13. unlock(L);
5. f4(); }
6. f5();
7. unlock(L);
8. if (x==0)
9. ERROR;
}

Figure 2. A program with a hard to reproduce real race

warning. Hybrid race detection, or similar imprecise tech-
niques, can, on the other hand, give false warnings. RACE-
FUZZER detects the only real race in the program. It also
creates a couple of scenarios, or concurrent executions, toil-
lustrate the race. One such scenario shows the reachabilityof
ERROR1. Moreover, RACEFUZZERprovides full functional-
ity to replay these scenarios.

3.2 Example 2 illustrating that RACEFUZZER can
detect races with high probability

We use the two-threaded program in Figure 2 to argue
that RACEFUZZER can create a real race condition with
high probability compared to an algorithm using the default
scheduler or a simple random scheduler.

The program uses a shared variablex which is initialized
to 0. The important statements in this program are statements
8, 9, and 10. We add the other statements in the program to
ensure that statement 8 gets executed after the execution ofa
large number of statements bythread1 and statement 10
gets executed bythread2 at the beginning. This snippet
represents a pattern in real-world programs.

If we run the program with the default scheduler or use
a simple randomized scheduler, then the probability of ex-
ecuting statements 8 and 10 temporally next to each other
is very low. In fact, with high probability, the execution of
statements 8 and 10 will be separated by the acquire and the
release of the lockL. As such a happens-before race detec-
tor will not be able to detect the race with high probabil-
ity. Moreover, in this example, it is very unlikely that state-
ment 10 will be executed after statement 8. This implies that
ERROR will not be executed with very high probability. The
probability of detecting the race and reaching theERROR
statement depends on the number of statements before state-
ment 8. The probability becomes lower as the number of
statements before statement 8 is increased.

We now show that RACEFUZZER creates the real race
with probability 1 and reaches theERROR statement with
probability 0.5. Moreover, we show that this probability is
independent of the number of statements before statement 8.

In the first phase, hybrid race detection will predict that state-
ment 8 and statement 10 could be in race. The RACEFUZZER

algorithm will then be invoked withRaceSetinitialized to
(8, 10). For any thread schedule, eitherthread1 will get
postponed at statement 8 orthread2 will get postponed at
statement 10. Therefore, RACEFUZZER will create the race
condition with probability 1. In either case, RACEFUZZER

will resolve the race and executethread1 with probabil-
ity 0.5. Therefore, the probability thatthread1 reaches the
ERROR statement is 0.5.

The above example shows that in some situations even
if two racing statements are separated by many statements
in a real execution, they can be brought temporally next to
each other with high probability by RACEFUZZER. As such
RACEFUZZER can create real race conditions with very high
probability. Our experimental results in Section 5.2 support
this fact.

4. Implementation
RACEFUZZER can be implemented for any language that
supports threads and shared memory programming, such as
Java or C/C++ with pthreads. We have implemented the
RACEFUZZER algorithm only for Java. The implementa-
tion is part of the CAL FUZZER tool set [45] developed to
experiment with various smart random testing algorithms.
RACEFUZZER instruments Java bytecode to observe various
events and to control the thread scheduler. Bytecode instru-
mentation allows us to analyze any Java program for which
the source code is not available. The instrumentation inserts
various methods provided by RACEFUZZER inside Java pro-
grams. These methods implement both hybrid-race detection
and the RACEFUZZER algorithm.

The implementation of the hybrid-race detection algo-
rithm is not an optimized one. This is because the goal of
this work is to implement and experiment with the RACE-
FUZZER algorithm. As such the implementation of the
hybrid-race detection algorithm runs slower than the opti-
mized implementation reported in [37].

The instrumentor of RACEFUZZER modifies all bytecode
associated with a Java program including the libraries it uses,
except for the classes that are used to implement RACE-
FUZZER. This is because RACEFUZZER runs in the same
memory space as the program under analysis. RACEFUZZER

cannot track lock acquires and releases by native code. As
such, there is a possibility that RACEFUZZER can go into a
deadlock if there are synchronization operations inside unin-
strumented classes or native code. To avoid such scenarios,
RACEFUZZER runs a monitor thread that periodically polls
to check if there is any deadlock. If the monitor discovers a
deadlock, then it removes one thread from the setpostponed.

RACEFUZZER can also go into livelocks. Livelocks hap-
pen when all threads of the program end up in thepostponed
set, except for one thread that does something in a loop with-
out synchronizing with other threads. We observed such live-



locks in a couple of our benchmarks includingmoldyn. In
the presence of livelocks, these benchmarks work correctly
because the correctness of these benchmarks assumes that
the underlying Java thread scheduler is fair. In order to avoid
livelocks, RACEFUZZER creates a monitor thread that peri-
odically removes those threads from thepostponedset that
are waiting for a long time.

In [31], it has been shown that it is sufficient to perform
thread switches before synchronization operations, provided
that the algorithm tracks all data races. RACEFUZZER, there-
fore, only performs thread switches before synchronization
operations. This particular restriction on thread switch keeps
our implementation fast. Since RACEFUZZER only tracks
synchronization operations and a racing statement pair, the
runtime overhead of RACEFUZZER is significantly lower
than that of hybrid-race detection and happens-before race
detection techniques.

5. Empirical Evaluation
5.1 Benchmark Programs

We evaluated RACEFUZZER on a variety of Java multi-
threaded programs. The benchmark includes both closed
programs and open libraries that require test drivers to close
them. We ran our experiments on a Macbook Pro with a
2.2 GHz Intel Core 2 Duo processor and 2GB RAM. We
considered the following closed benchmark programs in
our experiments:moldyn, montecarlo, raytracer,
three benchmarks from the Java Grande Forum,cache4j,
a fast thread-safe implementation of a cache for Java ob-
jects, sor, successive order-relaxation benchmark from
ETH [53], hedc, a web-crawler application kernel devel-
oped at ETH [53],weblech, a multi-threaded web site
download and mirror tool,jspider, a highly configurable
and customizable Web Spider engine,jigsaw 2.2.6,
W3C’s leading-edge Web server platform. The total lines
of code in these benchmark programs is approximately
600,000. The bugs and real races discovered in the bench-
mark programs whose column 8 has an empty entry, were
previously unknown.

The open programs consist of several synchronized
Collection classes provided with Sun’s JDK, such as
Vector in JDK 1.1, ArrayList, LinkedList,
HashSet, and TreeSet in JDK 1.4.2. Most of these
classes (except theVector class) are not synchro-
nized by default. Thejava.util package provides spe-
cial functionsCollections.synchronizedListand
Collections.synchronizedSet to make the above
classes synchronized. In order to close the Collection
classes, we wrote a multi-threaded test driver for each such
class. A test driver starts by creating two empty objects of the
class. The test driver also creates and starts a set of threads,
where each thread executes different methods of either of the
two objects concurrently. We created two objects because
some of the methods, such ascontainsAll, takes as an

argument an object of the same type. For such methods, we
call the method on one object and pass the other object as an
argument.

We use our experiments two demonstrate the following
two hypotheses:

1. RACEFUZZER can create real race conditions with very
high probability. It can also show if a real race can lead
to an exception.

2. The real races detected automatically by RACEFUZZER

are same as the real races that are predicted and manually
confirmed for a number of existing benchmark programs.

5.2 Results

Table 1 summarizes the results of our experiments. Column
2 reports the number of lines of code. The reported num-
ber of lines of code is always fewer than the actual number
of lines of code. This is because we do not count lines in
several libraries. Columns 3, 4, and 5 report the average run-
time for the benchmark programs using normal execution,
the hybrid-race detection algorithm, and RACEFUZZER, re-
spectively. For the I/O intensive benchmarks, the runtime
of RACEFUZZER is 1.1x-3x greater than normal execution
time. However, the runtime is significantly greater for the
high-performance computing applications. The runtime of
the hybrid-race detection algorithm has many orders of mag-
nitude higher runtime for the high-performancebenchmarks.
The runtime for RACEFUZZER is not that high because we
only instrument the racing statements and synchronization
operations in RACEFUZZER. Since RACEFUZZER is a tool
for testing and debugging, we do not worry about runtime as
long as the average runtime is less than a few seconds. Due
to the interactive nature of thejigsaw webserver, we do
not report the runtime forjigsaw.

Columns 6, 7, and 8 report the number of potential races
detected by the hybrid algorithm, the number of real races
reported by RACEFUZZER, and the number of real races
known from case studies done by other researchers, respec-
tively. In each case, we count the number of distinct pairs
of statements for which there is a race. The fact that the
numbers in column 7 are equal to the numbers in column
8 demonstrates our hypothesis 2, i.e., RACEFUZZER reports
all real races that were reported by existing dynamic anal-
ysis tools. In case ofmoldyn, we discovered 2 real races
(but benign) that were missed by previous dynamic analysis
tools.

Column 9 reports the total number of distinct pairs of
racing statements for which an exception has been thrown
by a benchmark program. Column 10 reports the number
of exceptions thrown by a benchmark when run with the
JVM’s default scheduler. We describe details of some of the
exceptions detected by RACEFUZZER in the next section.
The results in these two columns show that RACEFUZZER is
far more effective in discovering insidious errors in concur-
rent programs compared to the default scheduler. Column 11



Program SLOC Average Runtime in sec. # of Races # of Exceptions Probability of
Name Normal Hybrid RF Hybrid RF (real) known RF Simple hitting a race
moldyn 1,352 2.07 > 3600 42.37 59 2 0 0 0 1.00
raytracer 1,924 3.25 > 3600 3.81 2 2 2 0 0 1.00
montecarlo 3,619 3.48 > 3600 6.44 5 1 1 0 0 1.00
cache4j 3,897 2.19 4.26 2.61 18 2 - 1 0 1.00
sor 17,689 0.16 0.35 0.23 8 0 0 0 0 -
hedc 29,948 1.10 1.35 1.11 9 1 1 1 0 0.86
weblech 35,175 0.91 1.92 1.36 27 2 1 1 1 0.83
jspider 64,933 4.79 4.88 4.81 29 0 - 0 0 -
jigsaw 381,348 - - 0.81 547 36 - 0 0 0.90

vector 1.1 709 0.11 0.25 0.2 9 9 9 0 0 0.94
LinkedList 5979 0.16 0.26 0.22 12 12 - 5 0 0.85
ArrayList 5866 0.16 0.26 0.24 14 7 - 7 0 0.55
HashSet 7086 0.16 0.26 0.25 11 11 - 8 1 0.54
TreeSet 7532 0.17 0.26 0.24 13 8 - 8 1 0.41

Table 1. Experimental results.

shows that in most cases RACEFUZZER can create a real race
with very high probability. In order to roughly estimate the
probability, we ran RACEFUZZER 100 times for each rac-
ing pair of statements. The above results demonstrate our
hypothesis 1.

5.3 Bugs Found

RACEFUZZER discovered a number of previously unknown
uncaught exceptions in the benchmark programs. We next
describe a couple of them. RACEFUZZER discovered an
uncaught exception incache4j that happens due to a race
over the sleep field in CacheCleaner.java. The
code snippet causing the exception is shown below.

Thread1:

synchronized(this){
if(_sleep){

interrupt();
}

}

Thread2:
_sleep = true;
try {

sleep(_cleanInterval);
} catch (Throwable t){
} finally {

_sleep = false;
}

If sleep is set totrue by Thread2 before entering the
try block andThread1 is executed next, then an uncaught
InterruptedException is thrown causingThread2
to crash. Note that herethis corresponds toThread2.

We discovered some concurrency related problems in the
JDK 1.4.2 classesLinkedList,ArrayList,HashSet,
andTreeSet. Specifically, we discovered real races in the
containsAll and equals methods ofLinkedList
and ArrayList, and in the containsAll and
addAll methods of HashSet and TreeSet. For
example, if we call l1.containsAll(l2) and
l2.removeAll() in two threads, wherel1 and
l2 are synchronizedLinkedLists (created using
Collections.synchronizedList), then we can
get both ConcurrentModificationException

and NoSuchElementException. This is because
the containsAll method is implemented by the
superclass AbstractCollection and the imple-
mentation uses iterator in a thread-unsafe way: a call
to l1.containsAll(l2) calls the synchronized
iterator method onl2 and then goes over the iterator
without holding the lock onl2. As a result, the iterator
accesses themodCount field of l2 without holding the
lock on l2. Therefore, any other method call onl2 that
modifiesmodCount, such asremoveAll, would interfere
with the iterator code leading to exceptions. The code works
without exception in a single-threaded setting and probably
the developers had a single-threaded setting in mind while
implementing the unsynchronizedcontainsAll method
in AbstractCollection. However, while extending
the LinkedList class to synchronizedLinkedList
using a decorator pattern in theCollections class, the
developers did not override thecontainsAll method to
make it thread-safe.

6. Related Work
A large body of research focuses on dynamic or static
race detection [41, 35, 21, 43, 10, 14]. Type based tech-
niques [20, 5, 6], which require programmer annotations,
have been used to reduce the race detection problem to a type
checking problem. Since annotation writing creates signifi-
cant overhead, techniques [3] have been proposed to infer
type annotations by looking at concurrent executions. Other
language based techniques for static race detection include
nesC [24] and Guava [5]. Several static race detection tech-
niques [49, 19, 39] based on lockset [43] have been pro-
posed. An important advantage of the static techniques is
that they could find all potential race conditions in a pro-
gram. A primary limitation of these techniques is that they
report a lot of false races. More recent efforts on static race



detection [33, 32] have significantly reduced the number of
false warnings with minimal annotations, but the problem
of false positives still remains. Moreover, these techniques
could not infer if a race could lead to an exception in the
program. Therefore, manual inspection is needed to separate
real races and harmful races. Manual inspection often over-
whelms the developers. RACEFUZZER tries to reduce the ef-
fort of manual inspection by exploiting the potential race re-
ports generated by any imprecise race detection technique to
guide a random thread scheduler.

Dynamic race detection techniques are often based on
lockset [43, 53, 10, 36, 2] or on happens-before [44, 14,
1, 11, 30, 42, 13, 34]. Lockset based dynamic techniques
could predict data races that did not happen in a concur-
rent execution; however, such techniques can report many
false warnings. Happens-before based dynamic techniques
are capable of detecting races that actually happen in an exe-
cution. Therefore, these techniques are precise, but they can-
not give good coverage as lockset based algorithms. Specifi-
cally, happens-before race detectors cannot predict racesthat
could happen on a different schedule or they cannot create
a schedule that could reveal a real race. Recently happens-
before race detection has been successfully extended to clas-
sify harmful races from benign races [34], but they suf-
fer from the same limitations as happens-before techniques.
Hybrid techniques [14, 37, 38, 54] combine lockset with
happens-before to make dynamic race detection both precise
and predictive. Despite the combination, hybrid techniques
could report many false warnings. One characteristics that
distinguishes RACEFUZZER from other dynamic techniques
is that RACEFUZZER activelycontrols the thread scheduler,
whereas the other techniquespassivelyobserve an execution.

Recently, a couple of random testing techniques [18, 50]
for concurrent programs have been proposed. These tech-
niques randomly seed a Java program under test with the
sleep(), theyield(), and thepriority() primitives
at shared memory accesses and synchronization events. Al-
though these techniques have successfully detected bugs in
many programs, they have two limitations. These techniques
are not systematic as the primitivessleep(), yield(),
priority() can only advise the scheduler to make a
thread switch, but cannot force a thread switch. Second,
reproducibility cannot be guaranteed in such systems [50]
unless there is builtin support for capture-and-replay [18].
RACEFUZZER removes these limitations by explicitly con-
trolling the scheduler. We recently proposed an effective ran-
dom testing algorithm, called RAPOS [45], to sample par-
tial orders almost uniformly at random. However, we ob-
served that RAPOS cannot often discover error-prone sched-
ules with high probability because the number of partial or-
ders that can be exhibited by a large concurrent program
can be astronomically large. Therefore, we focused on test-
ing “error-prone” schedules, i.e. schedules that exhibit arace
condition.

Static verification [4, 16, 28, 40, 8] and model check-
ing [17, 29, 25, 27, 52, 31] or path-sensitive search of the
state space is an alternative approach to finding bugs in con-
current programs. Model checkers being exhaustive in na-
ture can often find all concurrency related bugs in concur-
rent programs. Unfortunately, model checking does not scale
with program size. Several other systematic and exhaustive
techniques [7, 9, 48, 46] for testing concurrent and parallel
programs have been developed recently. These techniques
exhaustively explore all interleavings of a concurrent pro-
gram by systematically switching threads at synchronization
points. More recently, efforts [47] have been made to com-
bine model checking with lockset based algorithms to prove
the existence of real races; however, this technique suffers
from scalability problem as in model checking.

Randomized algorithms for model checking have also
been proposed. For example Monte Carlo Model Check-
ing [26] uses random walk on the state space to give proba-
bilistic guarantee of the validity of properties expressedin
linear temporal logic. Randomized depth-first search [15]
and its parallel extensions have been developed to dramat-
ically improve the cost-effectiveness of state-space search
techniques using parallelism.

Capture and replay techniques have been combined with
delta-debugging [12] to pinpoint a program location where
a thread switch could result in a program failure. The key
difference between this technique and RACEFUZZER is that
the former technique narrows down the difference between
a successful schedule and a failure inducing schedule to pin-
point a bug. RACEFUZZER randomly controls thread sched-
ules based on potential race conditions to determine if a race
is real.
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