
SYNERGY: A New Algorithm for Property Checking

Bhargav S. Gulavani Thomas A. Henzinger Yamini Kannan
IIT Bombay EPFL Microsoft Research India

bhargav@cse.iitb.ac.in tah@epfl.ch yaminik@microsoft.com

Aditya V. Nori Sriram K. Rajamani
Microsoft Research India Microsoft Research India

adityan@microsoft.com sriram@microsoft.com

ABSTRACT
We consider the problem if a given program satisfies a speci-
fied safety property. Interesting programs have infinite state
spaces, with inputs ranging over infinite domains, and for
these programs the property checking problem is undecid-
able. Two broad approaches to property checking are testing
and verification. Testing tries to find inputs and executions
which demonstrate violations of the property. Verification
tries to construct a formal proof which shows that all execu-
tions of the program satisfy the property. Testing works best
when errors are easy to find, but it is often difficult to achieve
sufficient coverage for correct programs. On the other hand,
verification methods are most successful when proofs are
easy to find, but they are often inefficient at discovering
errors. We propose a new algorithm, Synergy, which com-
bines testing and verification. Synergy unifies several ideas
from the literature, including counterexample-guided model
checking, directed testing, and partition refinement. This
paper presents a description of the Synergy algorithm, its
theoretical properties, a comparison with related algorithms,
and a prototype implementation called Yogi.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms
Testing, Verification

Keywords
Software model checking; Directed testing; Abstraction re-
finement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’06/FSE-14, November 5–11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-468-5/06/0011 ...$5.00.

1. INTRODUCTION
Automated tools for software verification have made great

progress over the past few years. We can broadly classify
these tools into two categories (the boundaries are not sharp,
but we still find the classification useful). The first class of
verification tools searches for bugs. These are tools that ex-
ecute the program in one form or another. At one extreme,
in program testing, the program is executed concretely on
many possible inputs. Such test inputs may be either gener-
ated manually, by employing testers, or generated automat-
ically using tools (see [9] for a survey on automatic test-case
generation). At the other extreme, the program is executed
abstractly, by tracking only a few facts during program ex-
ecution [4, 10]. These tools are very efficient and therefore
widely used. They have different strengths and weaknesses:
testing finds real errors but it is difficult to achieve good
coverage; abstract execution, if done statically, can cover all
program paths but signals many false positives (potential
errors that are not real). As a result, many intermediate
solutions have been pursued, such as directed testing [13].
In this approach, the program is executed symbolically, by
collecting all constraints along a path. This information is
then used to drive a subsequent test into a desired branch
off the original path. For concurrent programs, a practi-
cal technique to increase testing coverage is to systemati-
cally explore different interleavings by taking control of the
scheduler [11].

The second class of verification tools searches for proof
of the absence of bugs. These are tools that try to find a
safe “envelope” of the program, which contains all possible
program executions and is error-free. Also this class con-
tains a diverse set of methods. At one extreme, in classical
model checking [7], the exact envelope of a program is con-
structed as the reachable state space. At the other extreme,
in deductive verification [24], a suitable program envelope is
an inductive invariant. While computing the exact envelope
proceeds automatically, the computation rarely terminates.
On the other hand, user intervention is usually required to
define a suitable overapproximate envelope, say, in the form
of loop invariants, or in the form of abstraction functions.
These inefficiencies, due to state explosion and the need for
user guidance, have prevented the wide adoption of proof-
based tools. Again, recent approaches try to address these
issues. For instance, in counter-example guided abstraction
refinement [3, 5, 6, 17, 22], the search for a safe program en-
velope is automated by iteratively refining a quotient (parti-
tion) of the reachable state space. Of course, the execution-
based tools mentioned earlier may also produce proofs, for

117

ACM SIGSOFT Distinguished Paper

example, if complete coverage can be ensured by a test-case
generator, or if no potential errors (either real nor false) are
reported by an abstract interpretation; but it is rather ex-
ceptional when this happens. Conversely, the proof-based
tools may report bugs, but they generally do so only as a
by-product of an expensive, failed search for proof. Not
surprisingly, therefore, several recent papers have predicted
that testing and verification can be combined in interesting
ways [12, 15].

We present a new verification algorithm, called Synergy,
which searches simultaneously for bugs and proof, and while
doing so, tries to put the information obtained in one search
to the best possible use in the other search. The search
for bugs is guided by the proof under construction, and the
search for proof is guided by the program executions that
have already been performed. Synergy, thus, is a combi-
nation of underapproximate and overapproximate reasoning:
program execution produces a successively more precise un-
derapproximation of the reachability tree of the program,
and partition refinement produces a successively more pre-
cise overapproximation. Specifically, Synergy guides test-
ing towards errors; it can be viewed as “property-directed
testing”: if some parts of a program can be proved safe,
then Synergy focuses subsequent tests on other program
parts. In partition refinement [20, 23], on the other hand,
the biggest practical difficulty has been to decide where and
how to refine an insufficiently precise abstraction. Synergy
uses test information to make that decision. This is par-
ticularly effective during long deterministic stretches of pro-
gram execution, such as for loops. While proof-based tools
[3, 5, 17] may perform as many refinement steps as there
are loop iterations, an inexpensive, concrete execution of
the loop can immediately suggest the one necessary refine-
ment (see Example 3 below). Synergy, therefore, performs
better than the independent use of both execution-based
and proof-based tools. We are not the first to combine
concrete and abstract program execution. Synergy bears
some resemblance to the Lee-Yannakakis algorithm [23],
which recently has been suggested also for software verifica-
tion [27]. This algorithm constructs a bisimulation quotient
of the reachable state space by simultaneous partition refine-
ment and concrete execution, to see which abstract states
(equivalence classes) are reachable. However, there are im-
portant theoretical and practical differences between Syn-
ergy and Lee-Yannakakis. On the theoretical side, we
show that Synergy constructs a simulation quotient of the
program, not a bisimulation quotient. This is significant,
because simulation is a coarser relation than bisimulation,
and therefore proofs constructed by Synergy are smaller
than proofs constructed by Lee-Yannakakis. In fact, we
give an example for which Synergy terminates with a proof,
whereas Lee-Yannakakis does not terminate, because the
program has no finite bisimulation quotient. On the practi-
cal side, Lee-Yannakakis performs concrete program exe-
cutions only to avoid the refinement of unreachable abstract
states; it neither guides concrete executions towards errors,
nor does it use concrete executions to guide the refinement
of reachable abstract states. Synergy, in contrast, typically
collects many tests —even many that visit the same abstract
states— between any two refinements of the partition. This
is important, because tests are less expensive than refine-
ment (which involves theorem prover calls), and they give
valuable information for choosing the next refinement.

Yorsh, Ball, and Sagiv have recently proposed another
approach that involves both abstraction and testing [29]. If
there are abstract counterexamples, they fabricate new con-
crete states along the abstract counterexamples as a heuris-
tic to increase the coverage of testing. They are also able
to detect when the current program abstraction is a proof.
Unlike in Synergy, no refinement algorithm is provided.
Kroening, Groce, and Clarke have proposed using concrete
program execution to perform abstraction refinement [21].
Their refinement technique is based on partial program sim-
ulation using SAT solvers. Unlike their approach, Synergy
uses tests to choose the frontier of abstract counterexamples,
and tries to either extend this frontier by directed testing,
or refine the abstraction at the frontier.

This paper presents a description of the Synergy algo-
rithm, its theoretical properties (soundness and termina-
tion), a comparison with related algorithms, and a proto-
type implementation in a tool called Yogi. The implemen-
tation works currently for single-procedure C programs with
integer variables, and checks safety properties that are spec-
ified by invoking a special error() function. Even with this
limited expressiveness, we are able to demonstrate the effec-
tiveness of Synergy over existing algorithms for iterative
partition refinement.

2. OVERVIEW
We informally present the Synergy algorithm on an ex-

ample that is difficult for Slam-like [3, 17] tools. Consider
the program from Figure 1. Given an integer input a, the
program executes the body of the while loop 1000 times, in-
crementing the loop counter i each time without modifying
a. After the loop, the variable a is checked for being posi-
tive, and if the check fails, the error location 6 is entered.
Clearly, the program reaches the error iff the input a is zero
or negative. A counterexample-guided partition refinement
tool based on predicate abstraction will, in this example,
discover the 1000 predicates (i==0), (i==1), (i==2), . . . ,
(i==999) one by one before finding the path to the error.
This is because every abstract error trace that executes the
loop body less than 1000 times is infeasible (i.e., does not
correspond to a concrete error trace), and to prove each in-
feasibility, a new predicate on the loop counter needs to be
added. Directed testing, by contrast, performs well on this
example. If a test input a with (a>0) is chosen, the test
will not pass the assumption at location 5. Then, a Dart-
like [13] tool will suggest a subsequent test with (a<=0) in
order to pass that assumption. That test, of course, will hit
the error.

We will see that, on this example, Synergy quickly finds
the error by performing a Dart-like underapproximate analy-
sis. On other examples (such as the examples from Figures 3
and 8 below), where Slam succeeds quickly in finding a
proof, Synergy does so as well, by performing a Slam-like
overapproximate analysis. In particular, Dart works well
for deterministic loops (since there is only one path, which
a test can cover easily, but a large number of abstract states
along the path, which may take many iterations for iterative
refinement to generate); and Slam works well for sequences
of branches (such as Figure 8, since there are a small number
of abstract states for Slam to generate, but a large number
of paths for Dart to enumerate). However, typical programs
have both loops and sequences of branches, and Synergy
works better on such programs than running Slam or Dart

118

void foo(int a)
{

int i, c;
0: i = 0;
1: c = 0;
2: while (i < 1000) {
3: c = c + i;
4: i = i + 1;

}
5: assume(a <= 0);
6: error();

}

0 1 2 3 4 5 6

Figure 1: Example on which Slam does not work
well

in isolation. In fact, Synergy often performs better than
running Dart and Slam independently in parallel, because
in Synergy, the two analyses communicate information to
each other.

Synergy maintains two data structures. For the under-
approximate (concrete) analysis, Synergy collects the test
runs it performs as a forest F . Each path in the forest F cor-
responds to a concrete execution of the program. The forest
F is grown by performing new tests. As soon as an error
location is added to F , a real error has been found. For the
overapproximate (abstract) analysis, Synergy maintains a
finite, relational abstraction A of the program. Each state
of A is an equivalence class of concrete program states, and
there is a transition from abstract state a to abstract state b
iff some concrete state in a has a transition to some concrete
state in b. Initially, A contains one abstract state per pro-
gram location. For example, in Figure 1, there are 7 abstract
states, one per program location, with location 6 being the
error location. The partition A is repeatedly refined by split-
ting abstract states. As soon as the error location becomes
unreachable in the abstract program A, a proof has been
found (we will show in Section 5 that the abstract program
A always simulates the concrete program).

Synergy grows the forest F by looking at the partition
A, and it refines A by looking at F . Whenever there is an
(abstract) error path in A, Synergy chooses an error path
τerr in A which has a prefix τ such that (1) τ corresponds
to a (concrete) path in F , and (2) no abstract state in τerr

after the prefix τ is visited in F . Such an “ordered” path
τerr always exists. Synergy now tries to add to F a new
test which follows the ordered path τerr for at least one
transition past the prefix τ . We use directed testing [13] to
check if such a “suitable” test exists. If a suitable test exists,
then it has a good chance of hitting the error if the error is
indeed reachable along the ordered path. And even if the
suitable test does not hit the error, it will indicate a longer
feasible prefix of the ordered path. On the other hand, if
a suitable test does not exist, then instead of growing the

forest F , Synergy refines the partition A by removing the
first abstract transition after the prefix τ along the ordered
path τerr. This transition of τerr from, say, a to b can always
be removed by refining the abstract state a into a\Pre(b),
where Pre is the preimage (weakest precondition) operator
(defined in Section 3). Then Synergy continues by choosing
a new ordered path, until either F finds a real program error
or A provides a proof of program correctness.

On the example from Figure 1, the first ordered path
found by Synergy is the abstract error trace corresponding
to the program locations 0, 1, 2, 5, 6. Since the forest
F is initially empty, Synergy adds some test that proceeds
from location 0 to 1 along the ordered path (and possibly
much further). Say the first such test input is (a==45). This
test produces a concrete path that executes the loop body
1000 times and then proceeds to location 5 (but not to 6).
At this point, F contains this single path, and A still con-
tains one abstract state per program location. This is now
the point at which Synergy crucially deviates from previ-
ous approaches [12, 15, 21, 29]: the new ordered path that
Synergy returns executes the loop body 1000 times before
proceeding to locations 5 and 6. This is because all shorter
abstract error paths (which contain fewer loop iterations)
have no maximally corresponding prefix in F : consider an
abstract path τ ′err to 5 and 6 with less than 1000 loop itera-
tions; since 5 is visited by F , but no path in F corresponds
to the prefix of τ ′err until 5, the path τ ′err is not ordered.
Once the ordered path with 1000 loop iterations is chosen,
the next suitable test is one that passes from 5 to 6. Say
the second test input is (a==-5). This second test reaches
the error, thus showing the program unsafe.

3. ALGORITHM
A program P is a triple 〈Σ, σI ,→〉, where Σ is a (possibly

infinite) set of states, σI ⊆ Σ is a set of initial states, and

→ ⊆ Σ × Σ is a transition relation. We use
∗→ to denote

the reflexive-transitive closure of →. A property ψ ⊆ Σ
is a set of bad states that we do not want the program to
reach. An instance of the property checking problem is a
pair (P,ψ). The answer to the property checking problem
is “fail” if there is some initial state s ∈ σI and some error
state t ∈ ψ such that s

∗→t, and “pass” otherwise.
We desire to produce witnesses for both “fail” and “pass”

answers. A witness to “fail” is an error trace, that is, a fi-
nite sequence s0, s1, . . . , sn of states such that (1) s0 ∈ σI ,
and (2) si→si+1 for 0 ≤ i < n, and (3) sn ∈ ψ. A witness
to “pass” is a finite-indexed partition Σ� of the state space
Σ which proves the absence of error traces. Such proofs
are constructed using abstract programs. Given an equiva-
lence relation � on Σ with finitely many equivalence classes,
we define the abstract program P� = 〈Σ�, σI�,→�〉 such
that (1) Σ� is the set of equivalence classes of � in Σ; and
(2) σI� = {S ∈ Σ� | S ∩ σI
= ∅} is the set of equivalence
classes that contain initial states; and (3) S→�T , for S, T ∈
Σ�, iff there exist two states s ∈ S and t ∈ T such that s→t.
We use the term “regions” to denote the equivalence classes
in Σ�. We use the notation ψ� to denote the regions that
intersect with ψ; formally, ψ� = {S ∈ Σ� | S ∩ ψ
= ∅}. An
abstract trace is a sequence S0, S1, . . . , Sn of regions such
that (1) S0 ∈ σI�, and (2) Si→�Si+1 for all 0 ≤ i < n.
The abstract trace is an abstract error trace if, in addition,
(3) Sn ∈ ψ�. The finite-indexed partition Σ� is a proof

119

Synergy(P = 〈Σ, σI ,→〉, ψ)
Assumes: σI ∩ ψ = ∅.
Returns:
(“fail”, t), where t is an error trace of P reaching ψ; or
(“pass”, Σ�), where Σ� is a proof that P cannot reach ψ.

1: F := ∅
2: Σ� := {σI , ψ,Σ \ (σI ∪ ψ)}
3: loop
4: for all S ∈ Σ� do
5: if S ∩ F
= ∅ and S ⊆ ψ then
6: choose s ∈ S ∩ F
7: t := TestFromWitness(s)
8: return (“fail”, t)
9: end if

10: end for
11: 〈Σ�, σI�,→�〉 := CreateAbstractProgram(P,Σ�)
12: τ = GetAbstractTrace(〈Σ�, σI�,→�〉, ψ)
13: if τ = ε then
14: return (“pass”, Σ�)
15: else
16: 〈τerr, k〉 := GetOrderedAbstractTrace(τ, F)
17: t := GenSuitableTest(τerr, F)
18: let S0, S1, . . . , Sn = τerr in
19: if t = ε then
20: Σ� := (Σ� \ {Sk−1}) ∪
21: {Sk−1 ∩ Pre(Sk), Sk−1 \ Pre(Sk)}
22: else
23: let s0, s1, . . . , sm = t in
24: for i = 0 to m do
25: if si
∈ F then
26: F := F ∪ {si}
27: parent(si) := if i = 0 then ε else si−1

28: end if
29: end for
30: end if
31: end if
32: /*
33: The following code is commented out,
34: and is explained in Section 5:
35: Σ� := RefineWithGeneralization(Σ�, tt)
36: */
37: end loop

Figure 2: The Synergy algorithm

that the program P cannot reach the error ψ if there is no
abstract error trace.

The algorithm Synergy takes as inputs (1) a program
P = 〈Σ, σI ,→〉, and (2) a property ψ ⊆ Σ. It can produce
three types of results:

1. It may output “fail” together with a test generating
an error trace of P to ψ.

2. It may output “pass” together with a finite-indexed
partition Σ� proving that P cannot reach ψ.

3. It may not terminate.

The algorithm is shown in Figure 2. It maintains two core
data structures: (1) a finite forest F of states, where for
every state s ∈ F , either s
∈ σI and parent(s) ∈ F is a
concrete predecessor of s (that is, parent(s)→s), or s ∈ σI

and parent(s) = ε; and (2) a finite-indexed partition Σ�
of the state space Σ. The regions of Σ� may be specified,
for example, by program counter values and predicates over
program variables. Initially, F is empty (line 1), and Σ� is
the initial partition with three regions, namely, the initial
states σI , the error states ψ, and all other states (line 2)1.
In each iteration of the main loop, the algorithm either ex-
pands the forest F to include more reachable states (in the
hope that this expansion will help produce a “fail” answer),
or refines the partition Σ� (in the hope that this refinement
will help produce a “pass” answer). Intuitively, the expan-
sion of the forest F is done by directed test-case generation
in order to cover more regions, and the refinement of the
partition Σ� is done at the boundary between a region that
we know is reachable, and a region for which we cannot find
a concrete test along an abstract error trace. Thus, abstract
error traces are used to direct test-case generation, and the
non-existence of certain kinds of test cases is used to guide
partition refinement.

In each iteration of the loop, the algorithm first checks to
see if it has already found a test case to the error region.
This is checked by looking for a region S such that S ∩
F
= ∅ and S ⊆ ψ (line 5). In that case, the algorithm
chooses a state s ∈ S ∩ F and calls the auxiliary function
TestFromWitness to compute a test case (input vector) that
generates an error trace. Intuitively, TestFromWitness works
by successively looking up the parent until it finds a root of
the forest F . Formally, for a state s ∈ F , the function call
TestFromWitness(s) returns the state sequence s0, s1, . . . , sn

such that sn = s, and parent(si) = si−1 for all 0 < i ≤ n,
and parent(s0) = ε. The initial state s0 provides the desired
test case.

If it is not able to find a test case leading to the error,
the algorithm checks if the current partition Σ� provides a
proof that P cannot reach ψ. It does this by first build-
ing the abstract program P� using the auxiliary function
CreateAbstractProgram (line 11). Given a partition Σ�, the
function CreateAbstractProgram(P,Σ�) returns the abstract
program P� = 〈Σ�, σI�,→�〉. The next step is to call to
the auxiliary function GetAbstractTrace (line 12) in order to
search for an abstract error trace. If there is no abstract
error trace, then GetAbstractTrace returns the empty trace
ε. In that case, the algorithm returns “pass” with the cur-
rent partition Σ�. Otherwise, GetAbstractTrace returns an
abstract trace S0, S1, . . . , Sn such that Sn ⊆ ψ. The next
step is to convert this trace into an ordered abstract trace.
The abstract trace S0, S1, . . . , Sn is ordered if the following
two conditions hold:

1. There exists a frontier k
def
=Frontier(S0, S1, . . . , Sn) such

that (a) 0 ≤ k ≤ n, and (b) Si∩F = ∅ for all k ≤ i ≤ n,
and (c) Sj ∩ F
= ∅ for all 0 ≤ j < k.

2. There exists a state s ∈ Sk−1 ∩ F such that Si =
Region(parentk−1−i(s)) for all 0 ≤ i < k, where the
abstraction function Region maps each state s ∈ Σ to
the region S ∈ Σ� with s ∈ S.

We note that whenever there is an abstract error trace, then
there must exist an ordered abstract error trace. The auxil-
iary function GetOrderedAbstractTrace (line 16) converts an
arbitrary abstract trace τ into an ordered abstract trace

1In the examples, the initial partition has a separate region
for each program location.

120

τerr. Intuitively, it works by finding the latest region in the
trace that intersects with the forest F , choosing a state in
this intersection, and following the parent pointers from the
chosen state. The function GetOrderedAbstractTrace returns
a pair 〈τerr, k〉, where τerr is an ordered abstract error trace
and k = Frontier(τerr).

The algorithm now tries to extend the forest F along the
ordered abstract error trace τerr. In particular, it tries to
find a test case that extends F by at least one step at depth
k = Frontier(τerr) along the abstract trace τerr, but not nec-
essarily all the way along τerr; such suitable tests can po-
tentially deviate from the abstract trace after k steps. This
flexibility is crucial: it allows the test to follow the concrete
semantics of the program, and in doing so, avoid unnecessary
refinements. We define suitable tests in two steps. First we
define F -extensions, which are sequences that can be added
to F while still maintaining the invariant that F is a for-
est (without adding cycles to F , or making some node in F
have two parents). A finite sequence s0, s1, . . . , sm of states
is an F -extension if (1) s0 ∈ σI , and (2) si→si+1 for all
0 ≤ i < m, and (3) there exists k such that (a) 0 ≤ k < m
and (b) si ∈ F for all 0 ≤ i < k and (c) sj
∈ F for all
k ≤ j ≤ m. Given an abstract trace τerr = S0, S1, . . . , Sn

with k = Frontier(τerr), and the forest F , a sequence of
states is suitable if it is (1) an F -extension and (2) follows
the abstract trace τerr at least for k steps. Formally, the
auxiliary function GenSuitableTest(τerr, F) takes as inputs
an ordered abstract trace τerr = S0, S1, . . . , Sn and the for-
est F , and either returns an F -extension t = s0, s1, . . . , sm

such that (a) m ≥ Frontier(τerr) and (b) si ∈ Si for all 0 ≤
i ≤ Frontier(τerr), or returns ε if no such suitable sequence
exists. We note that Dart [13] can be used to generate such
a suitable state sequence efficiently: for k = Frontier(τerr),
by choosing a state s ∈ Sk−1 ∩ F , performing a symbolic
execution along the path in the forest F up to state s, and
conjoining the constraints that correspond to the transition
to Sk, we can accumulate all constraints needed to drive a
test case to the region Sk.

If we succeed in finding such a suitable test case, we sim-
ply add it to the forest F (lines 23–27), and continue. If no
suitable test is found, then we know that there is no con-
crete program execution corresponding to the abstract trace
S0, S1, . . . , Sk. However, we already have a concrete execu-
tion along the prefix S0, S1, . . . , Sk−1, because Sk−1∩F
= ∅.
Thus, we split the region Sk−1 using the preimage operator

Pre(Sk)
def
= {s ∈ Σ | ∃s′ ∈ Sk. s→ s′} (lines 20–21), and thus

eliminate the spurious (infeasible) abstract error trace from
the abstract program. The call to the auxiliary function
RefineWithGeneralization (line 35) has been commented out.
This call is needed to help Synergy terminate on certain
programs; we will discuss this in Section 5.

The distinguishing feature of the Synergy algorithm is
the simultaneous search for a test case to witness an error,
and a partition to witness a correctness proof. The two
searches work in synergy (and hence the name). The search
for the proof guides the test-case generation, because each
new test case is generated with respect to an abstract error
trace. The search for the test cases guides the proof, be-
cause the non-existence of a test case beyond the frontier in
the forest of collected tests is used to decide where to refine
the partition.

void foo(int y)
{

0: lock.state = U;
1: do {
2: lock.state = L;
3: x = y;
4: if (*) {
5: lock.state = U;
6: y++;

}
7: } while (x != y)
8: if (lock.state != L)
9: error();

}

0 1 2 3 4 5 6 7 8 9

s

¬s ¬s

r

¬r

q

¬q

p

¬p

s

p: (lock.state != L)

q: (lock.state != L) && (x == y)

r: (lock.state != L) && (x == y+1)

s: (x == y+1)

Figure 3: Example on which Slam works well

4. DISCUSSION
In this section, we illustrate the Synergy algorithm on

several examples, and compare it with other approaches.
For the examples, we use a simple programming language
with integer variables and standard control constructs —
sequencing, conditionals (non-deterministic choice is denoted
by “if (*)”), and loops. A state of such a program consists
of a valuation for the variables. The program counter, pc, is
a special (implicit) variable in such programs; the values of
pc are specified as labels on the statements. We also treat
pc in a special way, as is done in most software verification
tools: we consider an initial partition, where each possible
value of pc defines a separate region (this is a deviation from
the description in Figure 2, which starts with three initial
regions).

Comparison with counterexample-guided abstraction
refinement. Consider the example in Figure 3 from [3].
This example is commonly used to illustrate how Slam-like
tools work [3, 17]. Slam and Blast are able to prove the
property by discovering two predicates (lock.state==U)

and (x==y) in two refinement steps.
Synergy starts with the initial partition {{pc = i} |

0 ≤ i ≤ 9}, and the initial abstract program is isomorphic
to the concrete program’s control flow graph. In the first
iteration, GetOrderedAbstractTrace returns an ordered ab-
stract error trace that executes the loop body exactly once,
namely, 〈({pc = 0}, {pc = 1}, {pc = 2}, {pc = 3}, {pc =
4}, {pc = 7}, {pc = 8}, {pc = 9}), 0〉. For brevity, we
omit pc from such traces and simply write the trace as
〈(0, 1, 2, 3, 4, 7, 8, 9), 0〉. The second component of the or-
dered abstract trace (in this case 0) is the frontier, which
indicates the position of the first region in the trace that does
not have a corresponding state (node) in the forest F main-

121

tained by the algorithm. In this case, the frontier 0 indicates
that no region in the abstract trace has been visited by the
forest F , which is initially empty. Thus, GenSuitableTest re-
turns a test case (i.e., a value of the input variable y) which
traverses the loop some number of times and visits all re-
gions along the abstract trace up to pc = 8. The concrete
trace generated by this test is added to the forest F .

In the second iteration, GetOrderedAbstractTrace returns
the ordered abstract trace 〈(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), 7〉, where
the frontier 7 indicates that the region at position 7 in the
trace (namely, {pc = 9}) is the first region that does not
have a corresponding state in F . However, GenSuitableTest
is unable to construct a test that follows this abstract trace
and makes a transition from {pc = 8} to {pc = 9}. Thus,
GenSuitableTest returns ε, and the refinement step (lines 20–
21 of the Synergy algorithm in Figure 2) splits the region
{pc = 8} into two regions —one satisfying the predicate
(lock.state!=L), and the other one violating it. Let us call
this predicate p, and denote the resulting regions as 〈8, p〉
and 〈8,¬p〉. GetOrderedAbstractTrace now returns the or-
dered abstract trace 〈(0, 1, 2, 3, 4, 5, 6, 7, 〈8, p〉, 9), 6〉, where
the frontier 6 indicates that the region 〈8, p〉 has not yet been
visited by the forest. It is not possible to construct a test
that follows this abstract trace and proceeds from region 7 to
region 〈8, p〉. Thus GenSuitableTest returns ε once again, and
the refinement step splits the region {pc = 7} with respect
to the predicate (lock.state!=L) && (x==y). Let us call
this predicate q, and denote the resulting regions as 〈7, q〉
and 〈7,¬q〉. GetOrderedAbstractTrace now returns the or-
dered abstract trace 〈(0, 1, 2, 3, 4, 5, 6, 〈7, q〉, 〈8, p〉, 9), 7〉. It
is possible to construct tests that follow this abstract trace
up to region 6, but it is not possible to construct a test that
then proceeds from region 6 to region 〈7, q〉. This results
in another refinement step, this time splitting the region
{pc = 6} with respect to the predicate (lock.state!=L)

&& (x==y+1). We call this predicate r. In subsequent it-
erations, the regions 4 and 5 are split with respect to the
predicate s = (x==y+1). This results in a proof of correct-
ness, shown at the bottom of Figure 3.

In the above example, the spurious abstract error traces
had each exactly one infeasibility, and refining that infea-
sibility in each iteration leads to a proof. If an abstract
error trace has more than one infeasibility, then existing
refinement techniques used by Slam-like tools have difficul-
ties in choosing the “right” infeasibility to refine. Deter-
ministic loops with a fixed execution count are particularly
difficult, and they make tools such as Slam and Blast
spend as many iterations of the iterative refinement algo-
rithm as there are executions of the loop body. (Although
heuristics have been implemented to deal with deterministic
loops —e.g., Slam replaces most deterministic loop pred-
icates with non-deterministic choice— the core difficulties
remain.) Consider, for example, the program shown in Fig-
ure 1. In this program, the error region at pc = 6 is reach-
able. However, an abstract error trace such as 〈0, 1, 2, 5, 6〉 is
spurious, because it exits the loop with 0 iterations. Refining
this infeasibility leads to 1000 iterations of the refinement
loop, resulting in the introduction of the predicates (i==0),
(i==1), . . . , (i==1000) one by one.

Synergy avoids these unnecessary refinements. The ini-
tial partition is {{pc = i} | 0 ≤ i ≤ 6}, and the initial ab-
stract program is isomorphic to the control flow graph. Con-
sider the ordered abstract trace 〈(0, 1, 2, 5, 6), 0〉 returned by

void foo(int a[])
{
int i, j;

0: i = 0; j = 1;
1: a[j] = 0;
2: while (i < 1000) {
3: a[j] = a[j] + i;
4: i = i + 1;

}
5: assume(a[0] <= 0);
6: error();

}

Figure 4: Example on which path slicing does not
work well

GetOrderedAbstractTrace. Since none of the abstract regions
have concrete counterparts in the forest F (which is initially
empty), a suitable test returned by GenSuitableTest is any
test that visits the region {pc = 0}. Let the test case be
(a==45). This test case traverses the while loop 1000 times
and visits all regions in the abstract trace except {pc = 6}.
All states along the test sequence are added to the forest F .
In the second iteration, the procedure GetOrderedAbstract-
Trace returns 〈(0, 1, 2, (3, 4, 2)1000 , 5, 6), 3004〉. This is be-
cause, even though GetAbstractTrace could have returned
a shorter abstract trace, such as (0, 1, 2, 5, 6), by following
the parent pointers from the state in forest F that lies in
the region {pc = 5}, the ordered abstract trace is forced to
traverse the loop 1000 times. The frontier 3004 indicates
that the region {pc = 6} has not yet been reached by the
forest F . Now, GenSuitableTest is able to generate the test
case (a==-5) that leads to the error.

Comparison with path slicing. The program from Fig-
ure 1 can be handled using path slicing [18]. This technique
takes an abstract error trace π and returns a “path slice”
π′, which is a projection of π such that (1) the infeasibility
of π′ implies the infeasibility of π, and (2) the feasibility
of π′ implies the existence of a concrete error trace. Given
the abstract error trace (0, 1, 2, 5, 6), path slicing removes
the loop, resulting in the sliced path (0, 1, 5, 6), which im-
mediately leads to the identification of the error. Path slic-
ing has to rely on other static analysis techniques such as
pointer analysis. If we change the example so as to keep a
two-element array, and replace the variables a and c by the
array elements a[0] and a[1], respectively (see Figure 4),
then path slicing is unable to slice the path (0, 1, 2, 5, 6) to
(0, 1, 5, 6), because a typical alias analysis is not able to as-
certain that the loop body does not affect the element a[0].
The Synergy algorithm, in contrast, finds this error in the
same way as in the previous example.

Comparison with computing bisimilarity quotients.
Partition refinement algorithms [20] are based on the no-
tion of stability. They start from the same initial partition
Σ0

� as the Synergy algorithm (Σ0
� contains three regions:

the initial states, the error states, and all other states). An
ordered pair 〈P,Q〉 of regions in a partition Σ� is stable
if either P ∩ Pre(Q) = ∅ or P ⊆ Pre(Q). A stabilization
step consists of choosing a pair 〈P,Q〉 of regions which is
not stable, and splitting P into the two regions P ∩ Pre(Q)
and P \ Pre(Q). Partition refinement algorithms work by
repeatedly performing stabilization steps until no unstable
pair of regions can be found. For finite state spaces, the

122

Lee-Yannakakis(P = 〈Σ, σI ,→〉, ψ)
Assumes: σI ∩ ψ = ∅.
Returns:
(“fail”, t), where t is an error trace of P reaching ψ; or
(“pass”, Σ�), where Σ� is a proof that P cannot reach ψ.

1: T := σI

2: Σ� := {σI , ψ,Σ \ (σI ∪ ψ)}
3: loop
4: for all S ∈ Σ� do
5: if S ∩ T
= ∅ and S ⊆ ψ then
6: choose s ∈ S ∩ T
7: t := TestFromWitness(s)
8: return (“fail”, t)
9: end if

10: end for
11: choose S ∈ Σ� such that S ∩ T = ∅ and
12: there exist s ∈ S and t ∈ T with t→s
13: if such S ∈ Σ� and s, t ∈ Σ exist then
14: T := T ∪ {s}
15: parent(s) := t
16: else
17: choose P,Q ∈ Σ� such that P ∩ T
= ∅ and
18: Pre(Q) ∩ P
= ∅ and P
⊆ Pre(Q)
19: if such P,Q ∈ Σ� exist then
20: Σ� := (Σ� \ {P}) ∪ {P ∩ Pre(Q), P \ Pre(Q)}
21: else
22: return (“pass”, Σ�)
23: end if
24: end if
25: end loop

Figure 5: The Lee-Yannakakis algorithm

most efficient known partition refinement algorithm is due
to [26]. Partition refinement algorithms terminate with the
bisimilarity quotient of the original program, provided that
the bisimilarity quotient has a finite index; if there are in-
finitely many bisimilarity classes, then partition refinement
does not terminate. Formally, given a program P and a
property ψ, a simulation � is a binary relation on Σ such
that for all states s, t ∈ Σ, if s � t, then (1) s and t lie within
the same region of the initial partition Σ0

�; and (2) for all
states s′ ∈ Σ with s→s′, there exists a state t′ ∈ Σ with
t→t′ such that s′ � t′ [25]. The symmetric simulation re-
lations are called bisimulations, and the coarsest of those is
called bisimilarity. If the program P cannot reach the error
region ψ, then the bisimilarity quotient provides a proof for
this fact.

Sometimes the reachable part of the bisimilarity quotient
is finite, even though the bisimilarity quotient itself has an
infinite index. Thus it is important to stabilize only reach-
able regions. The Lee-Yannakakis algorithm [23] finds the
reachable bisimilarity quotient of an infinite-state system.
For comparison, we present the Lee-Yannakakis algorithm
in Figure 4 using notation similar to the Synergy algo-
rithm. It starts from the initial partition and iterates two
phases: (1) “search” tries to produce a witness (state) for
the concrete reachability of each abstractly reachable region
(the witnesses are maintained in a tree T); and (2) “split”
tries to stabilize every reachable region with respect to all
other regions (including the unreachable ones). The Lee-

void foo(int y)
{

0: while (y > 0) {
1: y = y - 1;

}
2: assume(false);
3: error();

}

0 1 32

Figure 6: Example on which Lee-Yannakakis does
not work well

Yannakakis algorithm iterates the search and split phases
while giving priority to search as long as it makes progress.
Recently this idea has re-appeared as underapproximation-
guided abstraction refinement for model checking software
[27]. There, a concrete search is performed with abstract
matching (so as to keep at most one witness per region),
and after the search is done, stability is checked on every
pair 〈P,Q〉 of regions for which P has a witness.

The main difference between Lee-Yannakakis and Syn-
ergy is that Synergy does not attempt to find a part of
the bisimilarity quotient. Indeed, when Synergy termi-
nates with a proof, the partition Σ� does not necessarily
form (a part of) a bisimulation quotient. Instead, the re-
sulting partition Σ� is guaranteed to simulate the program
P with respect to the error region ψ; that is, for all states
s ∈ Σ, (1) if s ∈ σI , then Region(s) ∈ σI�; and (2) for all
states s′ ∈ Σ with s→s′, we have Region(s)→�Region(s′);
and (3) if s ∈ ψ, then Region(s) ∈ ψ�. Note that if Σ�
simulates P with respect to ψ, then every concrete error
trace can be matched step-by-step by an abstract error trace.
The reachable bisimilarity quotient is guaranteed to simu-
late P with respect to ψ, but often Synergy finds a proof
with fewer equivalence classes than the number of reachable
bisimilarity classes. Thus, Synergy terminates in strictly
more cases than Lee-Yannakakis (see Section 5).

To illustrate this difference between Synergy and Lee-
Yannakakis, consider the program in Figure 6. We first
explain how Synergy works on this example. The ini-
tial partition is {{pc = i} | 0 ≤ i ≤ 3}, and the abstract
program is shown at the bottom of Figure 6. Synergy
terminates immediately, because there is no abstract error
trace. In contrast, Lee-Yannakakis and [27] do not ter-
minate on this example. This is because the reachable part
of the initial partition is not stable. Refinements to stabi-
lize the partition cause the introduction of the series (y>0),
(y>1), (y>2), . . . of predicates without terminating. This
program does not have a finite reachable bisimulation quo-
tient. However, it has a small abstraction which can prove
the absence of errors, and Synergy finds that abstraction.
Another difference between Synergy and reachable bisimu-
lation quotient algorithms is that Synergy allows multiple
concrete states to be explored within each abstract region

123

void foo(int x, int y)
{

0: if (x != y)
1: if (2*x = x + 10)
2: error();

}

0 1 2

Figure 7: Example on which Dart works well

during test generation (the reachable bisimulation quotient
algorithms keep only one witness per region). This differ-
ence, though seemingly minor, allows Synergy to handle
deterministic loops efficiently. Recall the example from Fig-
ure 1: Lee-Yannakakis and [27] need to introduce the
predicates (i==0), (i==1),..., (i==1000) before discov-
ering that the error region is reachable.

Comparison with directed testing. Dart [13] is an au-
tomated directed random testing tool which works by com-
bining concrete and symbolic execution. Dart starts with a
randomly generated test input, and in addition to running
the test concretely, it also executes the program with sym-
bolic values for the input along the same control path as the
test. The symbolic execution is then used to derive inputs
for driving another test down another (closely related) path.
By repeatedly choosing new paths, Dart directs test case
generation successively through all control paths of the pro-
gram. In contrast to Dart, Synergy does not attempt to
cover all paths. Instead, it tries to cover all abstract states
(regions).

Consider the example shown in Figure 7 from [13]. On
this example, Synergy works very similar to Dart. In
the first iteration GetOrderedAbstractTrace returns the or-
dered abstract trace 〈(0, 1, 2), 0〉, where the frontier points
to the region {pc = 0}. Thus, any test that visits {pc =
0} is a suitable test. Say GenSuitableTest generates the
test case (x==10) && (y==10) and adds the resulting con-
crete execution trace to the forest F . This test case cov-
ers only the region {pc = 0}. In the second iteration,
GetOrderedAbstractTrace returns the ordered abstract trace
〈(0, 1, 2), 1〉, with the frontier pointing to {pc = 1}, because
the test from the previous iteration already visited the re-
gion {pc = 0}. Thus, GenSuitableTest tries to find a test case
that drives the program from {pc = 0} to {pc = 1}, using
the constraint (x != y). Say GenSuitableTest generates the
new test case (x==50) && (y==255), which visits the region
{pc = 1}. In the third iteration, GetOrderedAbstractTrace
returns the ordered abstract trace 〈(0, 1, 2), 2〉, with the fron-
tier pointing to {pc = 2}. Now GenSuitableTest tries to find a
test case that drives the program from {pc = 0} to {pc = 1}
and further to {pc = 2}, using the constraints (x != y)

and (2*x == x + 10). Say the third generated test case is
(x==10) && (y==25). This test follows the abstract trace
(0, 1, 2) and finds the error.

void foo()
{

0: lock.state = L;
1: if (*) {
2: x0 = x0 + 1;

}
3: else {
4: x0 = x0 - 1;

}
5: if (*) {
6: x1 = x1 + 1;

}
7: else {
8: x1 = x1 - 1;

}

...

m: if (*) {
m+1: xn = xn + 1;

}
m+2: else {
m+3: xn = xn - 1;

}
m+4: if (lock.state != L)
m+5: error();

}

Figure 8: Example on which Dart does not work
well

Unlike Dart, we note that Synergy works by trying to
exercise abstract traces that lead to the error region. To
clarify this difference, consider the example shown in Fig-
ure 8. Synergy is able to prove this program correct in O(n)
iterations by refining each abstract state with the predicate
(lock.state==L). However, Dart requires O(2n) test cases
in order to cover all control paths of the program. This
is also an illustration of the difference between the goals
of Dart and Synergy. Dart’s goal is to cover all control
paths in a program; Synergy’s goal is to either prove a given
property, or find a test that violates the property. Real-
world programs have combinations of the “diamond” struc-
ture of if-then-else statements (as in Figure 8) and loops
(as in Figure 3 or Figure 1). In these cases, Synergy per-
forms better than running both Slam and Dart in paral-
lel independently, because its Slam-like proof search moves
through the “diamond” structure quickly without enumer-
ating an exponential number of paths, and its Dart-like
directed tests cover the loop quickly without any iterative
abstraction refinements.

5. SOUNDNESS AND TERMINATION
In this section we present some theorems that character-

ize the Synergy algorithm. The first theorem states that
Synergy is sound, in that every error and every proof found
by Synergy is valid.

Theorem 1. Suppose that we run the Synergy algorithm
on a program P and property ψ.

• If Synergy returns (“pass”, Σ�), then the partition
Σ� simulates P with respect to ψ, and thus is a proof
that P cannot reach ψ.

• If Synergy returns (“fail”, t), then t is an error trace.

124

void foo()
{
int x, y;

1: x = 0;
2: y = 0;
3: while (y >= 0) {
4: y = y + x;

}
5: assert(false);

}

Figure 9: Example on which Synergy fails to termi-
nate

Since the property verification problem is undecidable in
general, and Theorem 1 guarantees soundness on termina-
tion, it necessarily has to be the case that Synergy can-
not terminate on all inputs. However, we can prove that it
terminates in strictly more cases than algorithms that find
reachable bisimulation quotients. In order to show this, we
will use the following lemma.

Lemma 1. Suppose that the Lee-Yannakakis algorithm
terminates on input (P,ψ) and returns (“pass”, Σ∗

�). If we
run Synergy on the same input (P,ψ), then every iteration
of the main loop (lines 3–37) computes a partition Σ� that
is coarser than Σ∗

� (that is, every region in Σ∗
� is contained

in some region in Σ�).

Proof. We prove this by induction on the number of
iterations of Synergy’s main loop. The base case is imme-
diate. So assume that after iteration i = n the partition
Σ� is coarser than Σ∗

�. We need to show that this claim
still holds after iteration i = n+ 1. Since Lee-Yannakakis
has returned “pass” (by assumption), by Theorem 1 (sound-
ness), Synergy will not return “fail” in iteration i = n+ 1.
Therefore a local stabilization takes place (lines 20–21 of Fig-
ure 2). Since the region that is being split is reachable, this
split would also be performed by Lee-Yannakakis during
the split phase. Therefore, Synergy maintains the invari-
ant that the partition Σ� after iteration i = n+1 is coarser
than Σ∗

�, and the lemma follows.

Theorem 2. If the Lee-Yannakakis algorithm termi-
nates on input 〈P, ψ〉, then the Synergy algorithm termi-
nates on input 〈P, ψ〉 as well. Furthermore, there exist in-
puts on which Synergy terminates, but Lee-Yannakakis
does not.

Proof. The first part of the theorem follows from Theo-
rem 1 and Lemma 1. The second part of the theorem follows
from the example of Figure 6.

The Synergy algorithm fails to terminate in cases where
the refinement step on lines 20–21 of Figure 2 is unable to
find the “right” split. Consider the example shown in Fig-
ure 9. On this example, Synergy loops by repeatedly split-
ting the region {pc = 3} with the predicates (y<0), (y+x<0),
(y+2x<0), . . . , thereby generating longer and longer test
sequences. The abstract trace to the error region merely
gets longer and longer in each iteration. The algorithm fails
to discover the invariant (y>=0) && (x>=0). In order to
cope with such situations, we could add a call to procedure
RefineWithGeneralization on line 35 to discover a necessary
generalization. Examples of such generalization procedures

include widening (see, for example, [8, 14]) and interpolation
(see, for example, [16, 19]). However, the need for general-
ization is orthogonal to the need for discovering the “right”
place where to perform refinement. Even predicate discov-
ery algorithms that are able to generalize (such as [14] or
[19]) have difficulty with examples such as the deterministic
loop from Figure 1. The core contribution of Synergy is
to use testing in order to help in finding the right place for
refinement, both for the purpose of finding errors and the
purpose of finding proofs.

6. EVALUATION
We have implemented the Synergy algorithm in a tool

called Yogi2. The implementation is written in the pro-
gramming language F# [1], and the input to the tool is an
x86 program binary for any single-procedure C program with
only integer variables. Pointers are currently not supported.
Function calls are not supported either, with the exception
of two special functions:

• int nondet(): This function is used to model nonde-
terministic input —it takes no inputs and returns an
arbitrary integer.

• void error(): This function is used to model error
states.

Given a C program P with calls to nondet() and error(),
Yogi answers the following question: Are there possible inte-
ger values returned from invocations of the function nondet()

such that the program P invokes the function error()?
Yogi uses Vulcan [28] to parse the input x86 program

binary. The Zap theorem prover [2] is used to answer va-
lidity and satisfiability queries. Since our programs contain
only integers, we use only the theory of linear arithmetic.
Also, the model generation capability of Zap is used to im-
plement the function GenSuitableTest (see Figure 2). Our
implementation is very close to the algorithm described in
Figure 2, with a few optimizations. In particular, we sort
the concrete states in the forest F that are associated with
each region in the order in which they were added to F .
This leads to shorter traces from GetOrderedAbstractTrace,
and makes the tool faster. We allow the suitable test gen-
erated by GenSuitableTest to run to completion, but use a
time-out to abort if a test gets stuck in an infinite loop. We
use the technique described in [14] to discover generaliza-
tion predicates if the algorithm fails to terminate without
generalization (function RefineWithGeneralization).

Table 1 shows our empirical results. We compare each
test program on three algorithms —Synergy, Slam, and
Lee-Yannakakis. For each algorithm we give the number
of iterations taken, and the actual run time (in seconds).
The Slam tool is the latest version run with default options
(and with the -a0 option, where no apriori abstraction is
performed). Lee-Yannakakis is our own implementation
of the Lee-Yannakakis algorithm [23], built using the same
code infrastructure as Synergy. All test programs are small
examples such as the ones presented in Section 4. However,
they represent code patterns that we see commonly occur-
ring in real-world programs such as device drivers.

2Named for its ability to mix the abstract and concrete, in
peace and harmony.

125

Program Synergy Slam Lee-Yannakakis
iters time iters time iters time

test1.c 9 3.92 4 1.70 * *
test2.c 6 7.88 4 1.55 * *

test3.c 5 2.19 13 8.032 * *
test4.c 2 2.67 12 3.52 22 8.08
test5.c 2 1.28 1 0.90 * *
test6.c 1 1.45 1 1.27 1 1.75
test7.c 6 2.11 4 1.11 6 2.06

test8.c 2 1.28 2 1.19 * *

test9.c 3 1.39 1 1.19 3 1.42
test10.c 3 1.52 1 1.25 3 1.52

test11.c 2 1.30 13 5.03 * *
test12.c 7 2.30 13 10.25 * *

test13.c 12 3.17 2 1.31 12 3.18

test14.c 1 1.0625 12 3.453 * *

test15.c 3 5.98 * * 3 5.65

test16.c 3 9.20 * * * *

test17.c 2 2.28 * * * *
test18.c 24 13.41 * * * *
test19.c 24 10.84 * * * *
test20.c 22 9.42 * * * *

Table 1: Experimental results (“*” indicates that Yogi does not terminate within 20 minutes)

The programs test1.c and test2.c are similar to the
program from Figure 3. Both Slam and Synergy termi-
nate on these examples. Slam terminates with fewer iter-
ations on both programs due to the following reason: once
a predicate is discovered, Slam uses it at all program lo-
cations, but our current implementation for Synergy in-
troduces the predicate only in the regions that result from
splitting. Lee-Yannakakis does not terminate on these
programs, because they do not have finite reachable bisimu-
lation quotients. The programs test3.c, test4.c, test5.c,
test6.c, and test7.c are similar to the program from Fig-
ure 1. Slam takes longer to prove test3.c and test4.c

—these programs have deterministic loops, and Slam will
discover many predicates (corresponding to iterating the
loop) before proving the property. Lee-Yannakakis does
not terminate on test5.c, because it does not have a finite
reachable bisimulation quotient. The program test8.c is
similar to the program from Figure 6, and therefore Lee-
Yannakakis does not terminate. The programs test9.c

and test10.c are similar to the program from Figure 7.
The programs test11.c and test12.c have the following
structure: they have a deterministic loop with nondeter-
ministic branching within the loop. Synergy discovers the
loop invariant, because it is checked after the loop. How-
ever, since Slam discovers predicates by forward symbolic
execution, it introduces many predicates (corresponding to
iterating the loop), and therefore takes longer to prove the
property. Since test11.c and test12.c do not have a finite
reachable bisimulation quotient, Lee-Yannakakis does not
terminate on these programs. The program test13.c is
similar to the example from Figure 8. All three algorithms
terminate on this example. Slam terminates with fewer it-
erations due to the same reason as for test1.c and test2.c

—once a predicate is found, Slam adds it at all program lo-
cations, whereas our implementations of Synergy and Lee-

Yannakakis add it only to the regions resulting from the
split. The program test14.c combines loops and diamond-
shaped branching. The program test15.c has a loop with
a check for error inside the loop. Interestingly, the program
is correct, and has a finite reachable bisimulation quotient.
Both Synergy and Lee-Yannakakis terminate on this ex-
ample with three iterations, but Slam does not terminate.
The program test16.c is a correct program with an infi-
nite loop, and a check for error outside the loop. Synergy
proves this program correct, whereas Slam does not ter-
minate, because it fails to discover the loop invariant. Lee-
Yannakakis does not terminate on this program either, be-
cause it does not have a finite reachable bisimulation quo-
tient. For test17.c, test18.c, test19.c, and test20.c,
the Synergy implementation uses predicates generated by
the function RefineWithGeneralization (line 35). Of all the
examples presented, these are the only ones that use pred-
icates discovered by from generalization. Slam and Lee-
Yannakakis do not terminate on these examples, but this
comparison is not fair, because their implementations do not
invoke any predicate generalization functions.

7. CONCLUSION
Over the past few years, systematic testing tools and for-

mal verification tools have been a very active area of re-
search. Several recent papers have predicted that testing
and verification can be combined in deep ways [12, 15]. We
presented a new algorithm, called Synergy, which combines
directed testing and abstraction refinement based verifica-
tion algorithms in a novel way. The algorithm has both the-
oretical and practical benefits. It is theoretically interesting,
because it can be viewed as a relaxation of reachable par-
tition refinement algorithms [23, 27] in order to compute a
simulation quotient, rather than a bisimulation quotient. It

126

is practically interesting, because it combines the ability of
Slam-like tools [3, 17] to handle a large number of program
paths using a small number of abstract states, with the abil-
ity of Dart-like tools [13] to avoid unnecessary refinements
through concrete execution. Our current implementation,
which is called Yogi, handles a small subset of C (no point-
ers; no procedure calls). We are extending Yogi to support
these features as well, in order to enable a more thorough
understanding and evaluation of the Synergy algorithm.

8. ACKNOWLEDGMENTS
We thank Stefan Schwoon for his comments on an early

draft of this paper. We thank Shuvendu Lahiri and Niko-
lai Tillman for their help with the Zap theorem prover,
and Shankar Shastry for his help with Vulcan. We thank
Rakesh K. for his help with performing the experimental
comparison with Slam. We thank the Swiss National Sci-
ence Foundation for partial support of this research.

9. REFERENCES
[1] F#: http://research.microsoft.com/fsharp/fsharp.aspx.

[2] T. Ball, S. Lahiri, M. Musuvathi. Zap: Automated
theorem proving for software analysis. Tech. Rep.
MSR-TR-2005-137, Microsoft Research, 2005.

[3] T. Ball and S.K. Rajamani. Automatically validating
temporal safety properties of interfaces. In Model
Checking of Software (SPIN), LNCS 2057, pp.
103–122. Springer, 2001.

[4] W.R. Bush, J.D. Pincus, D.J. Sielaff. A static analyzer
for finding dynamic programming errors. Software
Practice and Experience, 30:775–802, 2000.

[5] S. Chaki, E.M. Clarke, A. Groce, S. Jha, H. Veith.
Modular verification of software components in C.
IEEE Trans. Software Engineering, 30:388–402, 2004.

[6] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith.
Counterexample-guided abstraction refinement. In
Computer-Aided Verification, LNCS 1855, pp.
154–169. Springer, 2000.

[7] E.M. Clarke, O. Grumberg, D. Peled. Model Checking.
MIT Press, 1999.

[8] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for the static analysis of
programs by construction or approximation of
fixpoints. In Principles of Programming Languages,
pp. 238–252. ACM, 1977.

[9] J. Edvardsson. A survey on automatic test data
generation. In Computer Science and Engineering in
Linköping, pp. 21–28. ECSEL, 1999.

[10] D. Engler, B. Chelf, A. Chou, S. Hallem. Checking
system rules using system-specific, programmer-
written compiler extensions. In Operating System
Design and Implementation, pp. 1–16. Usenix, 2000.

[11] P. Godefroid. Model checking for programming
languages using Verisoft. In Principles of
Programming Languages, pp. 174–186. ACM, 1997.

[12] P. Godefroid and N. Klarlund. Software model
checking: Searching for computations in the abstract
or the concrete. In Integrated Formal Methods, LNCS
3771, pp. 20–32. Springer, 2005.

[13] P. Godefroid, N. Klarlund, K. Sen. Dart: Directed
automated random testing. In Programming Language
Design and Implementation, pp. 213–223. ACM, 2005.

[14] B.S. Gulavani and S.K. Rajamani. Counterexample-
driven refinement for abstract interpretation. In Tools
and Algorithms for the Construction and Analysis of
Systems, LNCS 3920, pp. 474–488. Springer, 2006.

[15] E.L. Gunter and D. Peled. Model checking, testing,
and verification working together. Formal Aspects of
Computing, 17:201–221, 2005.

[16] T.A. Henzinger, R. Jhala, R. Majumdar, K.L.
McMillan. Abstractions from proofs. In Principles of
Programming Languages, pp. 232–244. ACM, 2004.

[17] T.A. Henzinger, R. Jhala, R. Majumdar, G. Sutre.
Lazy abstraction. In Principles of Programming
Languages, pp. 58–70. ACM, 2002.

[18] R. Jhala and R. Majumdar. Path slicing. In
Programming Language Design and Implementation,
pp. 38–47. ACM, 2005.

[19] R. Jhala and K.L. McMillan. A practical and
complete approach to predicate refinement. In Tools
and Algorithms for the Construction and Analysis of
Systems, LNCS 3920, pp. 459–473. Springer, 2006.

[20] P.C. Kanellakis and S.A. Smolka. Ccs expressions,
finite-state processes, and three problems of
equivalence. Information and Computation, 86:43–68,
1990.

[21] D. Kröning, A. Groce, E.M. Clarke. Counterexample-
guided abstraction refinement via program execution.
In Formal Engineering Methods (ICFEM), LNCS
3308, pp. 224–238. Springer, 2004.

[22] R.P. Kurshan. Computer-Aided Verification of
Coordinating Processes. Princeton University Press,
1994.

[23] D. Lee and M. Yannakakis. On-line minimization of
transition systems. In Theory of Computing (STOC),
pp. 264–274. ACM, 1992.

[24] Z. Manna and A. Pnueli. Temporal Verification of
Reactive Systems. Springer, 1995.

[25] R. Milner. An algebraic definition of simulation
between programs. In Artificial Intelligence (IJCAI),
pp. 481–489. British Computer Society, 1971.

[26] R. Paige and R.E. Tarjan. Three partition refinement
algorithms. SIAM J. Computing, 16:973–989, 1987.

[27] C.S. Pasareanu, R. Pelánek, W. Visser. Concrete
model checking with abstract matching and
refinement. In Computer-Aided Verification, LNCS
3576, pp. 52–66. Springer, 2005.

[28] A. Srivastava, A. Edwards, H. Vo. Vulcan: Binary
transformation in a distributed environment. Tech.
Rep. MSR-TR-2001-50, Microsoft Research, 2001.

[29] G. Yorsh, T. Ball, M. Sagiv. Testing, abstraction,
theorem proving: Better together! In Software Testing
and Analysis (ISSTA), pp. 145–156. ACM, 2006.

127

